GOVERNMENT OF THE PUNJAB IRRIGATION \& POWER DEPARTMENT

REVISED PC-I OF
FAN MANAGEMENT OF MITHA WAN HILL TORRENT IN D.G.KHAN DISTRICT
D.G.KHAN CONSTRUCTION DIVISION, DERA GHAZI KHAN. PROJECT CIRCLE, IRRIGATION DERA GHAZI KHAN. D. G. KHAN IRRIGATION ZONE, DERA GHAZI KHAN,

FAN MANAGEMENT OF MITHAWAN HILL TORRENT IN D.G.KHAN DISTRICT

Table of Contents

Sr. No.	Description.	Page No.
1	Index Plan	i
2	PC - I Proforma	$1-7 \mathrm{~A}$
3	Executive Summary	$8-12$
4	Comparative Statement	$13-14 \mathrm{~A}$
5	General Abstract of Cost	15
6	Detail of work done	$16-30$
7	Detail of Additional work	$31-42$
8	Model Study report	$61-63$
10	Cost of Social Mobilization	$64-69$
11	Training Centre	70
12	Maintenance work	71
13	Cost of Reserve Stock	$72-78$
14	Economic Analysis	79
15	Approved drawing of Distributor Structure	

GENERAL MAP OF HILL TORRENTS

PC - I PROFORMA

GOVERNMENT OF PAKISTAN
 PLANNING COMMISSION
 PC-I FORM
 (INFRASTRUCTURE SECTORS)

Name of the project.

Fan Management of Mithawan Hill Torrent in DG Khan District (Construction machinery for facility of watershed in Mithawan)

The project area is located in the south west of Punjab \& is bordered by the province of Sind in South, Baluchistan in the West \& N.W.F.P. in the North. It lies between the Indus River \& Suleman Mountain Range. In addition to this geographical classification, the area can be classified into hilly region, the PACHAD, the canal command area \& riverain area. The area falls under the administrative control of D.G.Khan District. The area is situated between latitudes 69 10' E $7049^{\prime} \mathrm{E}$ \& longitudes $283520^{\prime} \mathrm{N}$.

Irrigation \& Power Department Government of Punjab.

Irrigation \& Power Department
Government of Punjab.
Irrigation \& Power Department
Government of Punjab.
Water \& Power.
$2005-06 \& 2006-07$.
The project will contribute to achieve following main objectives:-
a) Eradication of hill torrent flood damages to the valuable agricultural lands, public properties, villages, abadies \& a large irrigation system.
b) Protection to the cultivable lands by flood control measures to arrest erosion \& harness the flows of hill torrents.
c) Make maximum use of flood water for irrigation in PACHAD area.
d) Rural area development.
e) Poverty alleviation of local inhabitants.
f) Eradication of flood damages in the canal command area as well as the PACHAD.
g) Make maximum use of flood water for agriculture in the PACHAD to increase production.
h) Establish stable farming in the PACHAD area.
i) To save local inhabitants from onslaught of flash floods.
j) To irrigate vast area (37897 acres) of Mithawan hill torrent.
k) To increase in yield from 40% to 60%.
l) Improvement in Civic values by enhancing their income, potential.

6 Description, justification, technical parameters \& technology transfer aspects (enclose feasibility study for projects costing Rs. 300.00 Million \& above)

Area \& Population.

Mithawan hill torrent is one of the thirteen hill torrents emerging out of Koh Suleman with watershed of about 741 KM Sq. The major town in the project area is D.G.Khan with population about 190542. The population of the D.G.Khan District is 1.643 Million with population density of 65 inhabitants per Km2 . The annual growth rate is assumed to be 3.06% similar to national average. In rural areas where most project activities exist, Saraiki is spoken by 78% \& Baluchi 18%, Urdu \& Punjabi about 2.6 \%, The literacy ratio in rural area of DGKhan District is 12% (19 \% male \& 5 \% female) obviously much below the provincial average.

Physiography.

The torrent flows fan out from the hilly regions, the PACHAD area is formed with alluvial fan \& piedmont alluvial plain. On west side reverain average area has RL 1000^{\prime} an on east Suleman Range has elevation of more than RL. 7000'.

Climate.

The climate of the area is characterized by a semi-arid to arid climate. The distribution of average rainfall differs according to the altitude \& gradually decreases from north to south. The winter rains are meagre \& sporadic. It amounts to approximately 310 mm in the north western hilly region \& 200 mm at the foot of the hills. The average annual rain fall is 144.2 mm (1978-90). The winter season extends from December to March \& summer season lasts from June to September. The area has hot summers \& mildy cold winters. The hottest month of June when the average maximum temperature is $41.7^{\circ} \mathrm{C}$. A maximum temperature of $48.0^{\circ} \mathrm{C}$ has been recorded in the year 1995. January is the coldest month \& mean maximum \& minimum temperatures are $40^{\circ} \mathrm{C}$ \& $20^{\circ} \mathrm{C}$ respectively. Monthly mean maximum temperature is $37.9^{\circ} \mathrm{C}$ in June \& monthly mean minimum temperature is $24{ }^{\circ} \mathrm{C}$ in January.

Geology.

Formation of sedimentary rocks of cretaceous to Tertiary are dominant in the area. Sedimentary rocks of mainly sand stone \& lime stone in Cretaceous to Jurassic are formed at west side of suleman range axis within the catchment area of those hil torrents located at middle to northern part of the project area i.e. Kaura, Vehova, Sanghar, Vidore \& Mithawan. The alluvial deposits, under laying the project area, constitute sand with clay, silt \& fine gravel as subordinate thin layers in small lenses. The lithology is predominated by medium sand. In some localities course sand \& fine gravel have also been encountered. The silty clay caps the coarser deposits, particularly in the western part of the project area.
Soil.
Two distinct land forms are found namely the piedmont plains (57.8%) \& river plains (41.7%), Both are quite distinct in nature \& can be easily recognized due to their general relief position \& mode of deposition. (crops, yields, etc.) Land capability classification is a method of appraisal \& grouping of soils to show their relative suitability for crops. The area has good agriculture land \& suitable for Wheat, Bajra, Fodder etc.

Irrigation.

The land owners construct four to five feet high bunds around their fields (Kamarahs) having areas about five acres to 20 acres or more depending upon the holding \& command from respective wahs. The flood water is diverted into these bounded fields, by constructing Gandas across the bunds of wahs and sub wahs at suitable sites.

Ground water.

There is shortage of ground water in PACHAD area. Ground water potential for agriculture is limited, It is practised in small scale in the northern part \& area along the irrigation canal.

Drainage.

The Mithawan hill torrent water finds natural drainage southward which accumulates along the right bank of D.G.Khan Canal. It is in excessive quantity, breaches the canal \& damages the crops, abadies villages, public property in canal command area other wise it passes through the constructed X-drainage structures at the canal.Flood damages are concentrated in canal irrigated area. With the proposed arrangements the intensity of the flooding will be low. Resulting, effective control of the drainage will prevail.

Agriculture.

The project area has an arid climate characterized by rain fall less than 300 mm concentrated during Kharif season. Consequently, the average under cultivation is less. The main feature of the economy is agrarian \& live stock. The agriculture production \& crop yield is low due to erratic rain fall. Jawar is the main crop. Cultivation of Bajra, Wheat \& Gram is limited. There is scope of increasing yields by addressing the relevant problem which among other include improved water management,

Technical parameters.

Mithawan is one of the major hill torrents originating from Suleman Range with a catchment area of 275 sq miles. The 25 years return period discharge of the torrent is 78000 Cusecs. JICA during the year 1995-96 carried out works for watershed managements and irrigation development in Mithawan. They constructed sediment pocket and dispersion structure at Choti Nallah and similarly a weir check dams and small impounding pond were constructed together with watershed management through plantation in Dholi Area. With these contributions the flood peak is reduced from 78000 Cusecs to 67000 Cusecs. Further utilization of 17000 Cusecs in the sub-mountainous area like Choti dispersion, Nangar dispersion, Sori and Rakhi dispersion. The balance 50000 Cusecs will be available below Choti Bala in PACHAD Area.
The Distributor Structure has been completed at site as per drawing prepared by M / S NESPAK and cleared by the Experts of Irrigation \& Power Department. The discharge coming through the torrent is used for irrigation purpose by the inhabitants of the area according to their rights, fixed under water act of 1906 and principle of SaropaPaina. For this purpose, distributor structure was constructed at the junction of three branches i.e. Northern Branch, Southern Branch and Ganahar Branch.
The total discharge of 50,000 cusec as per 25 years return period, reaching at this structure has to be distributed as per Haqoog of the branches mentioned as under:-

Northern Branch	$=$	$15000 \mathrm{Cs}:$
Southern Branch	$=15000 \mathrm{Cs}:$	
Ganahar Branch	$=20000 \mathrm{Cs}$	

The Distributor structure is constructed on the alluvial unstable sandy bed of Mithawan hill torrent and are spread over about one mile width across the flashy hill torrent bed. Due to unstable bed and sand bars on the upstream
side, the structure behaved not good regarding distribution of hill torrent water. The distribution of water of the branches was experienced uneven through the distributor structures. The public is demanding distribution of Mithawan hill torrent water in all the three branches according to their water rights and they emphasized their necessity through their representatives and approached the higher offices to resolve this issue.

The matter was referred to the Chief Engineer, Research to achieve the objectives of fair distribution of water according to the water rights.

Model Study recommendations.

initially, a number of rough tests were performed on the model. These tests were performed to simulate the model with prototype flow conditions. On the basis of these tests, the model was found true replica of the prototype. It was further verified by the field formation who visited the model running for base test at Hydraulic Research Station Nandipur on 02.10.2005. The Chief Engineer, Research issued model study report No. IRR - 1179 in January 2006 and has recommended the following structures for fair distribution of Mithawan hill torrent.

1. A partition bund existing in between Northern and Southern distributors is modified as under :-
i. Straight part 280 feet.
ii. Curved part length 785 feet with its radius of 900 feet.
2. Hockey spur tied to the left bank of the stream bund with the following details:
i. Shank length 430 feet and hockey part length 264 feet with radius 252 feet.
ii. Left existing low level bund of the torrent was given proper shape of bund to the tie point of shank of hockey spur.
3. Hudwali bund modifications :-
i. Straight part 720 feet.
ii. Curved part 376 feet with radius 540 feet.

The recommendations and test results of the model are annexed with the revised PC-I for perusal.

Feasibility.
Feasibility of the project has already been completed by NESPAK in 1983-84. The Technical Experts of the Irrigation \& Power Department cleared the project drawings of main distributor structure. Model study has also run at Nandipur Research Station and

7 Capital cost estimates.

8 Annual operating and maintenance cost after completion of the project.
construction of structures have been provided in the revised PC-I as per model study report issued by the Chief Engineer, Research No. IRR - 1179 .

The construction of Management Structures has been deleted from the revised PC-I for the time being and Stake holder's awareness has been added to convince the water user to adopt the realistic distribution in the revised PC-I. These structures will be constructed with the final decision of Stake holder's awareness Committees through separate PCI.

Provision of a Training Centre have also made in the revised PC-I to conduct the workshops regarding the importance of Management Structures. The local, Technical / Revenue staff and member of water users committee will be trained to achieve the objectives of the project.

Economic characteristic of area.

At present the project area is considered as economically very back ward having very low production in agriculture.

Local
FEC

Rs. 155.530 Million

Rs. 162.00 Million
Total :- Rs. 317.530 Million

Des:	Salary (M)	Non Salary (M)	Total (M)
Local	4.128	2.223	6.351
Foreign	-	-	-
Total :-	4.128	2.223	6.351

The project will be operated \& maintained by I\&P Department

Des:	Local (M)	FEC (M)	Total (M)
Federal Govt. share	\cdots	\cdots	\ldots
Provincial share	155.530	\ldots	155.530
Beneficiaries share	\ldots	\cdots	-
Donor's share	\ldots	162.00	162.00
Total :-	$\mathbf{1 5 5 . 5 3 0}$	162.00	317.530

The balance scope of work will be completed in 15 months.

Year	Financial Target
$2003-05$	$112.50+162.00(\mathrm{GOJ})=274.50$
$2005-06$	19.268
$2006-07$	23.762

(Rs. 162.00 Million worth of machinery already procured from Govt. of Japan under Grand in Aid)

No revenue receipts as water rates for areas beyond canal command are not applicable.

Rs, 6.351 Million.
Crop yield of 33500 acres will increase and more jobs will be created due to the implementation of the project. Project will provide the opportunity to enhance green forestation.

Local labour, skilled \& unskilled will be involved during construction and operation of the project.

No adverse environmental effects are envisaged. On the contrary the works included in programme would help in protecting environmental hazards i.e. erosion of the land by floods, etc.

April 2006 to June 2007 (15 months)
No additional staff will be needed for the execution of the project. Existing establishment of Construction Division, D.G.Khan will do the job. However for routine ward \& watching \& repair \& maintenance the 25 No. Beldars would be required. No other additional staff would be required for maintenance works / activities.

the proposed project.

Certified that the project proposal has been prepared on the basis of instructions provided by the Planning Commission for the preparation of PC-I for infrastructure sector projects.

PREPARED BY:

(MOHABBAT KHAN) $\quad 8 / 3 / 36$
XECUTIVE ENGINEER, D.G.KHAN CONSTRUCTION DIVISION, © DERA GHAZI KHAN.

Ph: 0642-9260257

CHECKED BY:

APPROVED BY:

(ARIF NADEEM)
SECRETARY,
GOVERNMENT OF THE PUNJAB, IRRIGATION \& POWER DEPARTMENT,

LAHORE.

EXECUTIVE SUMMARY OF THE PROJECT.

The scheme of "Fan Management of Mithawan Hill Torrent in D.G.Khan District" was approved by ECNEC on 20.03 .2003 with the cost of Rs. 364.268 Million (Rs. 202.0 GOP share and Rs. 162.00 Million GOJ share in shape of Machinery). The approved project envisaged for the construction of two main components i.e. Distributor Structure and Management Structures.

Mithawan is one of the major hill torrents originating from Suleman Range with a catchment area of 275 sq miles. The 25 years return period discharge of the torrent is 78000 Cusecs. JICA during the year 1995-96 carried out works for watershed managements and irrigation development in Mithawan. They constructed sediment pocket and dispersion structure at Choti Nallah and similarly a weir check dams and small impounding pond were constructed together with watershed management through plantation in Dholi Area. With these contributions the flood peak is reduced from 78000 Cusecs to 67000 Cusecs. Further utilization of 17000 Cusecs in the sub-mountainous area like Choti dispersion, Nangar dispersion, Sori and Rakhi dispersion. The balance 50000 Cusecs will be available below Choti Bala in PACHAD Area.

The Distributor Structure has been completed at site as per drawing prepared by M/S NESPAK and cleared by the Experts of Irrigation \& Power Department. The discharge coming through the torrent is used for irrigation purpose by the inhabitants of the area according to their rights,
fixed under water act of 1906 and principle of Saropa-Paina. For this purpose, distributor structure was constructed at the junction of three branches i.e. Northern Branch, Southern Branch and Ganahar Branch.

The total discharge of 50,000 cusec as per 25 years return period, reaching at this structure has to be distributed as per Haqooq of the branches mentioned as under:-

Northern Branch $=$	15000 Cusecs
Southern Branch $=$	15000 Cusecs
Ganahar Branch $=$	20000 Cusecs

The Distributor structure is constructed on the alluvial unstable sandy bed of Mithawan hill torrent and are spread over about one mile width across the flashy hill torrent bed. Due to unstable bed and sand bars on the upstream side, the structure behaved not good regarding distribution of hill torrent water. The distribution of water of the branches was experienced uneven through the distributor structures. The public is demanding distribution of Mithawan hill torrent water in all the three branches according to their water rights and they emphasized their necessity through their representatives and approached the higher offices to resolve this issue.

The matter was referred to the Chief Engineer, Research to achieve the objectives of fair distribution of water according to the water rights.

MODEL STUDY RECOMMENDATIONS.

Initially, a number of rough tests were performed on the model. These tests were performed to simulate the model with prototype flow conditions. On the basis of these tests, the model was found true replica of the prototype. It was further verified by the field formation who visited the model running for base test at Hydraulic Research Station Nandipur on 02.10.2005. The Chief Engineer, Research issued model study report No. IRR - 1179 in January 2006 and has recommended the following structures for fair distribution of Mithawan hill torrent and stability of distribution structure.
4. A partition bund existing in between Northern and Southern distributors is modified as under :-
i. Straight part 280 feet.
ii. Curved part length 785 feet with its radius of 900 feet.
5. Hockey spur tied to the left bank of the stream bund with the following details :
i. Shank length 430 feet and hockey part length 264 feet with radius 252 feet.
ii. Left existing low level bund of the torrent was given proper shape of bund to the tie point of shank of hockey spur.
6. Hudwali bund modifications :-
i. Straight part 720 feet.
ii. Curved part 376 feet with radius 540 feet.

The recommendations and test results of the model are annexed with the revised PC-I for perusal.

MAIN OBJECTIVES OF THE PROJECT.

The main objectives of the project are mentioned as under :-
i) Reduction in damages to infrastructure in the area.
ii) Canal breaches will stop.
iii) Damages to the standing crops in canal command area will be minimized.
iv) Enhanced irrigation supplies in the $P A C H A D$ area.
v) Improvement in the economic condition of the area.

The objective mentioned from Sr. i - iii have almost been achieved by the construction of Distributor structure but for enhanced irrigation supply in the PACHAD area and to improve the economic condition of the inhabitants, the construction of additional works as recommended in Model Study report are essential. The design of the Management Structures has been cleared by the Central Design Office, Irrigation \& Power Department, Lahore, wherein proportionate distribution of water has been suggested. The water users do not agree to it because they want to get supply in accordance with Saropa-Paina principle. This law basically provides that the upstream users will always have the priority rights over downstream users. There is no other any economical option for the Management Structures, except with the proposed design.

Consequently the construction of Management Structures has been deleted from the revised PC-I for the time being and programme for Stake Holder's Awareness has been added to convince the water user to adopt the realistic distribution in the revised PC-I. These structures will be constructed after the Stake Holder's are agreed through separate PC-I.

Provision of a Training Centre have also made in the revised PC-I to conduct the workshops regarding the importance of Management Structures. The local, Technical / Revenue staff and member of water users committee will be trained to achieve the objectives of the project.

Provision for initial launching has been made in revised PC-I to make good the launched apron caused due to operation of main regulator and its allied works, during previous year hill torrents flood flow. The provision is made at 10% of the total quantity of apron of this structure.

Early revision of PC-1 is requested please.

GIG
SUPERINTENDiNG ENGINEER, $10 / 03$
PROJECt] CIRCLE, IRRIGATION,
C ERA GHAZI KHAN.
l wi
EXECUTIVE ENGINEER, D.G.KHAN CONSTRUCTION DIVISION, DEA GHAZI KHAN.
EITAUNSA SUE DIVISION 11Revised PC-1 of MithawanCom.M

REVISED PC-I OF FAN MANAGEMENT OF MITHAWAN HILL TORRENT

DESCRIPTION	Orignal PC-1	Rs in Million				
		REVISED PC-I			Difference	Remarks
		Work done	Work to be done	Total		
Distributor, Bed Fixer \& U/s Left Bank	134.803	114.740		114.740	-20.063	Saving is due to less tender rate.
Management structure	58.755	0	0	0.000	-58.755	The pacca structures can distribute the flood water proportionately but the beneficieries do not agree. They want to get water according to Saropa Paina principle. Social Mobilization is needed before construction of structure and therefore deleted.
Additional work recommended in Model study		0	22.137	22.137	22.137	Due to formation of sand bars in the bed of Mithawan nullah, the low floods are not distributed as proposed in the PC-I. Model study was carried out by IRI Lahore \& recommended additional works which will help equitable distribution of water among Northern \& Southern branch and stability of Distributor structure.
Stake holder's awareness.		0	3.132	3.132	3.132	Social Mobilization is necessary to have a dialogue with the beneficiaries of management structures, the construction of which have been postponed in the revised PC-I. Management structures will be constructed under a new ADP scheme, when beneficiaries agree.
Training center and training material \& Honouraria		0	5.027	5.027	5.027	Provision of training centre has been made to conduct work shop regarding importance of Management structures. The local technical Revenue staff and members of water users committees will be trained to achieve the objective of the project. stricturritin lanowehnis
Stone for initial launching.		0	2.676	2.676	2.676	Provision of Reserve stock-s maternateral has been made to cope with any emergency arising at site during operation of main regulator and its allied works. Stone is also needed to restore the design top level of launched apron.
Total	193.558	114.740	32.972	147.712	-45.846	

DESCRIPTION	Orignal PC-1	REVISED PC-1			Difference	Remarks
		Work done	Work to be done	Total		
Cost of Machinery (GOJ)	162.000	162.000	0	162.000	0.000	
Total	355.558	276.740	32.972	309.712	-45.846	
3 year O\&M Cost / Maintenance of executed work	8.710	0.000	7.000	7.000	-1.710	Due to hill torrent flood flow, after completion of main regulator and its allied structures, some damages and launching of aprons has taken place. Repair is necessary under the project funds, because no funds under O\&M are available.
Total	364.268	276.74	39.972	316.712	-47.556	
Add w.c \& contigency			0.815	0.815	0.815	
G.Total	364.268	276.740	40.787	317.530	-46.738	

DERA GHAZI/KAHAN

Serdue icser
CHIEF ENGINEERO
IRRIGATAN KONE
DERA GHAZI KAKAN.
i

SUPERINTENDING ENGINEER 107
PROJECT EIRCLE IRRIGATIOH: $\frac{1}{2}$ DERA GHAZIKHAN.

GEN: ABSTRACT OF COST

Hand

と得....
 REVISED PC-I OF FAN MANAGEMENT OF MITHAWVAN HILL TORRENT IN DISTRICT D.G.KHAN.

GENERAL ABSTRACT OF COST

EXECUTIVE ENGINEER, D.G.KHAN CONSTRUCTION DIVISION, DERA GHAZI KHAN.

DETAIL OF WORK DONE

REVISED PC-I OF FAN MANAGEMENT OF MITHAWVAN HILL TORRENT IN DISTRICT D.G.KHAN

ABSTRACT OF COST

WORK DONE

DISTRIBUTOR

Main distributor contractor work	$=$	84708192
Main distributor shuttering work	$=$	2537871
Main distributor departmental work	$=$	22962123
Camp office, Workshop \& machinery shed	$=$	988276
	Sub Total:-	$=$

MISCELLANEOUS
Total station, Multimedia, Digital Camera, Model study, Adjustment of vehicles, computer with printer, Wireless sets $=3543601$
COST OF MIACHINERY

$$
\begin{aligned}
& = \\
\text { G.Total:- } & =162000000 \\
& 276740063
\end{aligned}
$$

WORK TO BE DONE

ADDITIONAL WORK RECOMMENDED IN MODEL STUDY

Departmental work	4254597
Contractor work	17881627
Sub Total:-	$=22136224$
Stake holder's awareness.	3132000
Construction of training center	5026673
Maintenance cost of executed work	7000000
Stone for initial launching.	2676559
Sub Total:-	17835232
Total:-	39971456
Add W.C \& Contigencies	814887

G.Total:- = 40786343

SAY:- = 40.786

SUB DIVISIONAL OFFICER TAUNSA CONSTRUCTION SUB DIVISION

DERA GHAZI KHAN.

EXECUTIVE ENGINEER
D.G.KHAN CONSTRUCTION DIVISION

DERA GHAZI KHAN.
COMPARATIVE STATEMENT OF MITHAWAN PROJECT.
CONTRACTOR WORK.

S/No	Description	Actual work done at site.			
		Quantity	Rate	Premium	Cost
1	Supplying and dumping stone at site.	2390304	521.80	-29\%	8855550
2	Carriage of stone lead 20 Km Hilly kacha.	7063096	265.19	-29\%	13298743
3	Coursed rubble masonary 1:6.	74334	3651.65	-8\%	2497264
4	P/L Spawl filling on slope.	949039	464.50	-29\%	3129883
5	P/ Stone pitching on slope.	1762501	976.80	-29\%	12223438
6	Coursed rubble masonary 1:3.	346685	4114.95	-8\%	13124641
7	P.C.C 1:3:6.	581671	4777.40	at par	27788750
8	P/L spawl on level.	213790	417.20	-29\%	633272
9	Supplying and filling stone in wire crates.	668107	665.50	-29\%	3156839
				Total:-	84708192

CONTRACTOR WORK

DISTRIBUTOR, BED FIXER AND U/S LEFT BANK
DETAIL OF QUANTITIES (WORK DONE)

```
1 Supply and dumping at site without boat
including handling of material with in 3
chain stone or boulders.
U/s Hud wali to escape R/s U/s Guide
bund
```



```
Escape R/s D/s Guide bund to escape
B/F R/s U/S G.bund+D/s guide
bund+back
Escape right side D/s guide bank
Main bund escape right side D/s
D/s right bank \# 2
Main bund escape B/F R/side U/s
Main bund escape B/F R/side D/s
Escape B/F right side U/s G/bank
Escape B/F right side D/s G/bank
Tandowani Bund(Left bank)+Main
bund L/distributore L/S U/S guide
bank.
Left distributor L/s U/s G/bank
Left distributor L/side bank
Main bund L/distributor L/s U/s
Tandowani Bund(Left bank)
Main bund L/D L/S D/s+D/s G.bund+D/S left bank.
L/distributor L/s D/s G/bank L/distributor main bund \(\mathrm{D} / \mathrm{s}\) D/s left bank
Main bund Left B/F U/S L/side + D/s G.banks
Left B/F L/S U/s G/bank
Left B/F L/S D/s G/bank
Left \(B / F\) main bund U/S
Left B/F main bund D/S
Escape L/S U/S guide bank+Main
bund escape left side U/S + main
bund R/dist U/S + G.Bank R/S U/S.
Escape L/s U/S G/bank
Main bund escape L/s U/s
Main bund R/distributor R/s U/s
R/distributor R/s U/s G/bank
```



```
Main bund escape L/S D/S+D/s G.Bank.
Main bund escape L/s.
Main bund escape L/s corner.
D/s G/bank escape L/s
```

Circular bund (D/s R/bund.I)
Circular bund outer side
Circular bund inner side
D/s right bund \# 1

D/s right bund \# 1 X-spur

Main bund R/distributor R/s D/s+G.Bank
R/distributor R/s D/s G/bank

R/distributor main bund D/s
Main bund Right B/F R/S U/S+U/S \&
D/s guide bank
Right B/F main bund
Curve
R/s B/F main bund
R/s B/F U/s G/bank
R/s B/F D/s G/bank
R. B/F main bund D/s

Main bund R/distributor L/s
$\mathrm{U} / \mathrm{s}+\mathrm{C}$.Bund U/S R/s(U/s+D/s G.Bank)
R/distributor L/s U/s G/bank
R/distributor main Bund U/s
Centeral bund R/side U/S
R/distributor L/side D/s G/bank
R/distributor main bund D / s
Centeral bund from R/s distributor to B/F D/s
Main bund L/distributor R/s $\mathrm{U} / \mathrm{s}+\mathrm{D} / \mathrm{s}+\mathrm{U} / \mathrm{s}$ centeral bund(U/S\&D/s G.Banks).

L/distributor U/s G/bank

L/distributor main bund U / s
Centeral bund U/s
L/distributor D/s G/bank
L/distributor main bund D / s
Centeral bund D/s

Main bund Left B/F U/S

R/side+U/S\&D/s G.banks+C.Bund
Left B / F U/s G/bank R/side.
Left B/F D/s G/bank R/side.
Left B / F main bund U / S R/s
Left B / F main bund U/S R/s curve
Left B / F main bund D / S R/s
Centeral bund $D / s \mathrm{~B} / \mathrm{F}$ bund $\mathrm{L} /$ side X-spur(U/S75.75+D/s80=155.75

Main bund Right B/F L/S U/S+D/S \&

 D/s guide bank+C.BundRight B/F U/S guide bank left side
Right B/F D/s guide bank Left side

B / F bund U / S	$=$	1	x	x 212.25	\times	8	x	3							5094
B/F bund U/S curve	$=$	1	x	9	$+$	33.5	1	2	x		8	x	3		510
B/F bund D/S	$=$	1	x	210.50	\times	8	x	3							5052
B / F bund D/S curve	$=$	1	\times	9	$+$	21.25	1	2	x		8	x	3		363
Centeral bund R/side D/S from B/F bund	$=$	1	\times	950.50	x	8	x	3							22812
Centeral bund+Shirti bund															
Centeral bund $\mathrm{R} /$ side	-	1	x	2005.00	x	8	x	3							48120
Centeral bund $\mathrm{R} /$ side		1	\times	1901.00	x	8	x	3							45624
Centeral bund $\mathrm{R} /$ side	$=$	1	\times	1302.50	x	8	x	3							31260
Centeral bund L/side	=	1	x	1980.00	x	8	x	3							47520
Centeral bund L/side curve	=	1.	\times	28	+	32	1	2	x		8	x	3		720
Shirti bund	$=$	1	\times	1559.50	\times	8	\times	3							37428
B/F escape main bund+G.bank L/S															
U/S+D/s															
U/s guide bank of escape B/F left side	$=$	1	x	- 276	+	303	1	2	x		8	x	3		6948
U/s guide bank of escape B / F left side curve		1	x	32	$+$	17	I	2	x		8	x	3		5881
B/F bund U/s left side		1	x.	60.00	x	8	ix	3							1440
B/F bund curve	=	1	X	10	$+$	0	1	2	x		8	x	3		120
D/s guide bank left side	$=$	1	x	265	$+$	290	,	2	x		8	x	3		6660
D/s guide bank left side curve	$=$	1	x	42	$+$	27	1	2	\times		8	x	3		828
B / F bund $D /$ s left side	$=$	1	x	53.50	x	8	\times	3							1284
B / F bund $D /$ s left side curve	$=$	1	\times	33.5	$+$	20	1	2	x		8	x	3		642
Phulco bund															
Phulco bund U/S	$=$	1	x	597.50	x	8	x	3							14340
Phulco bund D/S	$=$	1	x	597.50	x	8	x	3							14340
D/s Shirti bund	$=$	1	\times	594.75	x	8	\| ${ }^{\text {x }}$	3							14274
Ghariba Wah	$=$	1		1712.33		8	x	3							41096
Left distributor U/S apron	$=$	1	\times	340.00	x	35	x	3.3							39270
Left distributor D/S apron	$=$	1	\times	300.00	x	53.9	x	1							16170
Left distributor D/S apron	$=$	1	\times	300.00	x	55	x	3							$1950{ }^{\circ}$
Rigth distributor U/S apron	$=$	1	${ }^{1}$	340.00	\times	35	x	3.3							39270
Rigth distributor D/S apron	$=$	1	\times	300.00	x	53.9	x	1							16170
	$=$	1		300.00	x	55	x	3							49500
Left B/F apron	$=$	1		804.00	x	20	x	3				I			48240
Right B/F apron	$=$	1		804.00	x	20	x	3				\dagger			48240
Escape U/s apron	$=$	1		1664.00	\times	21	x	3				,			104832
Escape D/s apron	$=$	1	x	1664	x	11	$+$	10				x	4		69888
Escape D/s apron	$=$	1	\times	1664		11.18	+	10.75	1			\times	4		72983
Escape Dis apron													ta		2390304
Coursed rubble masonary hammer															
dressed other than building in cement sand morter 1:6 (profiles)															
U/s right bund \& escape right side	=	4	x	29.06	x	2	x	2							$46 \stackrel{1}{1}$
U/S guide bund	=	5	\times	28.55	x	2	x	2							571
	=	25	x	28.58	x	2	x	2							2858
	$=$	3	x	40.47	x	2	x	2							486
	$=$	6		40.54	x	2	x	2							973
Escape right side D/S guide bund	$=$	6	\times	40.36	x	2	x	2							969
Main bund D/S		3		40.30	x	2	\times	2	.						484
D/S right bund		10		28.54		2	x	2							1142
Main bund escape B/F U/S	=	4		28.99 x	x	2	X	2				!			464
Main bund escape B/F D/S		4		28.91	x	2	x	2							463
U/S guide bund		5		28.71		2		2							574
D/S guide bund		5		28.14	X'	2	x	2				,			563

Guide bund
b Escape R/s D/s Guide bund to escape B/F R/s U/S G.bund+D/s guide bund+back
U / s guide bund
Main bund
Curve
D/S right bund
Main bund B / F U/s
Main bund B/F D/s
U/s curve
U/s guide bund
D/S guide bund
D/s curve

e Main bund left B/f Left side U/s+D/s +guide banks.
U/S guide bund
Curve
D/s main bund
D/S guide bund
D/s main bund
$=1$
$=1$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
bund escape L/s U/s
Main bund right distributor U/s + quide bund R/s U/S
Escape L/s U/s Guide bund
Curve (A) \qquad
Curve
U/s guide bund
cure
(bund L.distributor U/s + guide bund.

U/s guide bund
Curve
Main bund
Curve
d Main bund left distributor D/s+D/s guide bund+D/s left bank
D/s guide bund
Curve
Main bund
Curve
D/s left bund
$=1 \times 791.00 \times 28.9 \times 1$

g Main bund escape L/s D/s+guide bund D/s
D/S guide bund
Curve
Main bund
h Circular bund
outer side
Inner side

[^0]

[^1]

[^2]
MAIN DISTRIBUTOR SHUTTERING WORK

DETAIL
1 Right distributor

U/s cutoff $=$	2	\times	410	\times	18	$=$	14760
D/s cutoff $=$	2	\times	410	x	18	$=$	14760
Right abutment $=$	1	x	304	x	20	$=$	6080
Left abutment $=$	1	x	304	\times	23	$=$	6992
							Total:-

2 Left distributor

$$
\begin{array}{rlllllll}
\text { U/s cutoff }= & 2 & \times & 410 & \times & 18 & =14760 \\
\text { D/s cutoff }= & 2 & \times & 410 & \times & 18 & = & 14760 \\
\text { Right abutment }= & 1 & \times & 304 & \times & 20 & = & 6080 \\
\text { Left abutment }= & 1 & \times & 304 & \times & 20 & = & 6080 \\
& & & & & & \text { Total:- } & =41680 \mathrm{Sft}
\end{array}
$$

3 Right bed fixer

cutoff $=$	2	\times	820	\times	18	$=$	29520
Right abutment $=$	1	\times	228	x	20	$=$	4560
Left abutment $=$	1	\times	228	x	20	$=$	4560

Total:- $=38640 \mathrm{Sft}$
4 Left bed fixer

$$
\text { cutoff }=2 \times 820 \times 18=29520
$$

Right abutment $=1 \times 228 \times 20=4560$
Left abutment $=1 \times 228 \times 20=4560$
Total:- $=38640 \mathrm{Sft}$
5 Escape

$$
\begin{array}{rllllllr}
\text { U/s cutoff }= & 2 & \times & 390 & \times & 10 & = & 7800 \\
\text { D/s cutoff }= & 2 & \times & 390 & \times & 10 & = & 7800 \\
\text { Right abutment }= & 1 & \times & 171 & \times & 3 & = & 513 \\
\text { Left abutment }= & 4 & \times & 284 & \times & 3 & = & 3408 \\
& & & & & \text { Total:- } & = & 19521 \mathrm{Sft}
\end{array}
$$

6 Escape

$$
\begin{aligned}
& \text { U/s cutoff }=2 \times 1310 \times 2=5240 \\
& =2 \times 1260 \times 3=7560 \\
& =2 \times 1060 \times 3=6360 \\
& \text { Total:- }=19160 \mathrm{Sft}
\end{aligned}
$$

7 Escape
D/s cutoff

$=$	2	x	1310	\times	2	$=$	5240
$=$	2	x	1310	x	3	$=$	7860
$=$	2	x	1310	x	3	$=$	7860
$=$	2	x	700	x	2	$=$	2800
						Total:-	$=23760 \mathrm{Stt}$

8 Escape
Abutment right

$=$	3	\times	284	\times	3	$=$	2556
$=$	1	\times	179.52	\times	3	$=$	539
$=$	4	\times	281.34	\times	3	$=$	3376
Total:-	$=$	6471 Sft					

9

Escape bed fixer $=2 \times 250 \times$| 2 |
| :--- |
| Total:- $=$ |
| $=$ |

Bubuivistonal Officer
Faunea Construction Sub Divislor
Dera Ghazi Khab

MAIN DISTRIBUTOR, BED FIXER AND UTS LEFT BANK

DETAIL OF DEPARTMENTAL WORK

1 Earth work excavation, earth work excavation from out side B.pits, lead 300^{\prime} in ashes sand and soft soil undressed and refilling of earth work arround structure Total quantity of work done $\quad=29720757 \mathrm{Cft}$

2 Transportation of pucca earth for covering on top and back slopes of banks average lead unto 5 mile
Total quantity of work done $=774353 \mathrm{Cft}$
3 Dressing of earth work
Total quantity of work done $=2566902 \mathrm{Stt}$
4 Running of truck trailer
Total quantity of work done $=1717 \mathrm{Km}$
5 Running of Dozer
Total quantity of work done $=8783.20$ Hours
6 Running of tractor / Trolly
Total quantity of work done $=10550.30$ Hours
7 Running of Loader
Total quantity of work done $=1467.70$ Hours
8 Shifting and mobilization of machinery from
D.G. Khan to site of work

Total quantity of work done $=1.00 \mathrm{Job}$
9 Carriage of gabion from D.G. Khan store to site
of work
Total quantity of work done $=10709$ Nos
Total cost of work done by the department on distributor, U/s left bank, Bed fixer. $=\quad$ Rs:- 22962123

FAN MANAGEMENT OF MITHAWAN HILL TORRENT.

ABSTRACT OF COST. (Camp Office)

Sr. No.	Quantity	Unit	Description.	Rate	Amount
1	2961.52	\%o Cft.	E/work excavation in foundation lead 100' shingle or grave.	1471.35	4357
2	1480.76	\% Cft.	P.C.C 1:4:8	3011.80	44598
3	2315.218	\% Cft.	Pacca brick work other than building upto 10 ' height, cement sand mortor ratio 1:6.	3297.10	76335
4	1594.06825	\% Cft.	Pacca brick work in foundation and plinth in cement sand mortor ratio 1:6.	3186.75	50799
5	226.5	\% Sft.	Providing \& laying damp proof course of cement concrete 1:2:4 (using cement sand and shingle) including bitumen coating with one coat bitumen and one coat polythine sheet $11 / 2^{\prime \prime}$ thick.	1158.95	2625
6	4303.85	\% Cft.	Pacca brick work in ground floor cement sand mortor 1:6.	3377.90	145380
7	198.94	P.Cft.	Reinforced cement concrete in roof slab, beams columns lintels,girders and other structure members laid in precast lain, in position or prestressed members cast in situ comploete in all respects, nominal mix 1:2:4.	94.15	18730
8	564.49	\% Kg.	Febrication of mild steel reinforcement for cement concrete including cutting, bending, laying in position, making joints and fastenings, including cost of binding wire and labour charges for binding of steel reinforcement (also includes removal of rust bars).	2442.40	13787
9	3154.50	P.Sft.	Providing laying precost prestressed roof slab with beam of approved size and quantity.	60.00	189270
10	3154.50	\% Sft.	Single layer of tiles $9^{\prime \prime} \times 41 / 2^{\prime \prime} \times 1 \quad 1 / 2^{\prime \prime}$ laid over $4^{\prime \prime}$ earth and $1^{\prime \prime}$ mud plaster without bhosa gronted with cement sand 1:3 on top of R.C.C roof bitumen coating sand blinded.	1177.55	37146
11	766.00	P.Sft.	Providing and fixing $11 / 2^{\prime \prime}$ thick deodar wood panelled or panelled glazed doors and windows, with mild steel chowkhat etc, comp; lete in all respects (excluding sliding bolt or lock) with M.S angle iron $11 / 2^{\prime \prime} \times 1 \quad 1 / 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ welded with M.S flat 2"x1/4".	151.60	116126
12	412.00	P.Ft.	Providing fixing G.I wire gauge 22 SWG, 12×12 meshes per square inch fixed to chowkhat, with $3 / 4^{\prime \prime}$ thick fixed to chowkhat, with $3 / 4^{\prime \prime}$ thick deodar wood strip and screws.	16.45	6777
13	412.00	P.Sft. M.	M.S flat $1 / 2^{\prime \prime} \times 1 / 8^{\prime \prime}$ frame in window of approved design including painting 3 coats complete.	61.30	25256
14	5516.50	\% Sft.	Cement plaster 1:4 upto 20' height 3/4" thick.	522.80	28840
15	6981.25	\%0 Cft.	Borrowpit excavation undressed lead upto 1 mile in ordianry soil.	1853.35	12939

16	1888.00	\% Cft.	Dry brick paving laid flat, sand grouted, including preparation of bed by watering, ramming and bringing the same to proper camber, by $1 / 2^{\prime \prime}$ thick mud plaster.	650.15	12275
17	499.50	\% Cft.	Providing, laying watering and ramming brick ballast $11 / 2^{\prime \prime}$ to $2^{\prime \prime}$ gauge mixed with 25% sand, for floor foundation, complete in all respects.	1003.85	5014
18	999.00	\% Sft.	Providing and layign topping of cement concrete 1:2:4 including surface finishing and divding in pannels $11 / 2^{\prime \prime}$ thick.	954.30	9533
19	3.00	E.No.	Providing and fixing glazed earthen ware water closet, squatter type combined with foot rest, white.	809.65	2429
20	7.00	E.No.	Providing and fitting P.Trap 4" glazed.	65.55	459
21	60.00	P.Rft.	Providing and fitting PVC 4" dia, including laying and jointing in trenches.	63.25	3795
22	3.00	E.No.	Providing and fixing looking glass $55 \times 40 \mathrm{Cm}$ size, and 5 mm thick first quality.	376.30	1129
23	3.00	E.No.	Providing and fitting glazed earthen ware wash hand basin $55 \times 40 \mathrm{Cm}$ including bracket set, waste pipe and waste coupling etc: white, with pedestal.	1438.10	4314
24	3.00	E.No.	Providing and fitting plastic made low down flushing cistern 3 gallon capacity, including bracket set, copper connection etc complete white.	902.45	2707
25	6.00	E.No.	Providing and fixing chromium mixing valve.	586.10	$35 i$
26	9.00	E.No.	Providing and fixing chromium plated tee stop cock heavy 2 Cm.	100.35	903
27	7.00	E.No.	Providing and fixing chromium plated bib cock $1 / 2^{\prime \prime}$.	138.85	972
28	90.00	P.Sft.	Making and fixing steel grated doors, complete with locking arrangement angle iron $2^{\prime \prime} \times 2^{\prime \prime} \times 3 / 8^{\prime \prime}$ and $3 / 4^{\prime \prime}$ square bars $4^{\prime \prime}$ centre to centre.	197.50	17775
29	456	P.Rft.	Providing laying, cutting jointing testing and disinfecting G.I. pipe line in trenches, with socket joints, using G.I. pipes of BBS 1387-1967 complete in all respects, with specials and valves light quality $1 / 2^{\prime \prime}$ dia.	18.75	8550
30	100	P.Rft.	Providing laying, cutting, jointing, testing and disinfecting G.I. pipe line in trenches, with socket joints, using G.I. pipes of BBS 1387-1967 complete in all respects, with specials and valves, light quality $3 / 4^{\prime \prime}$ dia.	25.60	2560
31	1	E.No.	Providing laying water tank made of fiber glass/Plastic 250 qallon.	5000.00	5000
32	700	\%.Rft	Providing and fixing barbed wire fencing on compound wall, consisting of $11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}$ angle iron post 3^{\prime} long, 4^{\prime} part embeded in cement concrete 1:4:8 base of size $6^{\prime \prime} \times 6$ " $\times 9$ " and 4 rows of barbed wire, including binding wire, paintaing posts, etc, complete in all respects.	3489.10	24424

	15	No.	Steel Charpai	1000.00	15000
	2	No.	Steel Almarah,	4000.00	8000
	2	No.	Offioce table.	3000.00	6000
	8	No.	Office Chair.	600.00	4800
	2	No.	Table steel.	800.00	1600
	6	No.	Chair steel.	600.00	3600
	4	No.	Choldari (double fly).	4000.00	16000
	4	No.	Supply of Balti	150.00	600
	50	No.	Mats	20.00	1000
	1	No.	Utensils.	15000.00	$1500 n$
34	1428	\% Sft.	Painting new surface. Prepariong surface \& painting of door \& windows any type (includinq edqes) 3 coats.	531.95	7596
35	10473	\% Stt.	White washing new surface 3 coats.	27.65	2896
36	159.58	\% Sft.	White glazed tiles $11 / 4^{\prime \prime}$ thick dado jointed in white cement mud mortor $3 / 4^{\prime \prime}$ thick including finished.	5663.10	9037
37	11	E.No.	Sliding bolts $12^{\prime \prime}$ long.	65.65	722
38	1	E.No.	Providing fitting glazed earthen ware water closet europeon type excludinq seat cover white.	1124.35	1124
39	1	E.No.	Providing fitting double seat cover only.	166.05	$16 u$
40	6	E.No.	Providing and fixing shower rose chromium plated.	586.10	3517
41	1	E.No.	Providing fitting plastic paper holder.	105.20	105
42	1	E.No.	Providing and fitting plastic i/c towel rail.	77.25	77
43	1	E.No.	Providing and fitting plastic soap dish.	51.55	52
44	1	E.No.	Providing and fitting plastic shelf.	69.80	70
45	3	P.Rft.	Providing and fitting waste pipe $11 / 4^{\prime \prime}$ dia.	18.35	55
46	4	E.No.	Providing and fitting flushing bend plastic.	24.35	97
47	9	E.No.	Providing and fitting 1 1/2" dia connection rubber connection.	26.10	235
48	2	E.No.	Providing and fitting water pump electric motor.	2500.00	5000
49	550	P.Rft.	Supplying and errectionof PVC pipe too wring on surface i/c damp and inspect boxes, pull boxes hands, tees joints labairina surface etc complete.	6.85	3768
50			Supply and errection of single core PVC insulated copper conductor cable in prelaid PVC pipe (ratio for cable only) 250 440 volts).		
i)	2400	P.Rft.	3/0.029	2.45	588.
ii)	1800	P.Rft.	7/0.029	4.00	7200
51			Supply and errection of copper conductor cable for service connection on prepaid pipe ratior for cable only PVC insulated PVC sheeted wire core 250-440.		
i)	300	P.Rft.	3/0.029	5.60	1680
ii)	300	P.Rft.	7/0.029	9.10	2730

ITEM WISE DETAIL OF THE EQUIPMENTS MACHINERY AND MATERIAL FOR PROJECT

Sr . No.	Item.	Unit	Quantity	Cost. (Rs. in Million)
1	Bulldozer (24 tons) with spare parts.	No.	4	49.16
2	Bulldozer (27 tons) with spare parts with ripper	No.	1	13.90
3	Wheel loader (1-2 m ${ }^{3}$)	No.	1	4.70
4	T.H. Trailer with spare parts.	No.	1	7.69
5	Front blade tractor (78 HP) with trolley spare parts.	No.	10	12.30
6	Tractor (48 HP) with water tanker and spare parts.	No.	3	2.28
7	4 WD single cabin pick-up with spare parts.	No.	2	1.60
8	Portable concrete mixer with spare parts.	No.	4	3.36
9	Vibratory concrete compactor with generator and spare parts.	No.	3	0.54
10	Conveyor belt with spare parts.	No.	6	0.36
11	Gabions crates.	No.	38900	58.73
12	Geo-textile filters.	M	2350	7.38
			G.TOTAL.	162.00

ADDITIONAL WORK RECOMMENDED IN MODEL STUDY

DEPARTMENTAL WORK

DETAIL \& COST.
Amount
1 Dressing of earth work (done by machinery or otherwise and left undressed) to desian section.

| Total Quantity | $=3647073$ | Cft | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Cooly required @ 0.12 per \% Cft | $=438$ | Nos $\times 165=72212$ | | |
| Earth work Dresser @ 0.2 per \% Cft | $=729$ | Nos $\times 300$ | $=218824$ | |

2 Earthwork excavation in ashes and soft soil or silt clearance undressed lead upto 300 ft : bv machine.

3 Earthwork outside borrow pits in ordinary soil undressed transportation of earth work upto lead 300 ft :

Total Quantity
Progress of Dozer
Due to lead less progress @ 30\%.
Working hours.
Add idle hours @ 10\%.

4 Earthwork outside borrow pits in ordinary aoil undressed transprotation of earthwork lead unto 5 miles. Totall quantity
(I) CARRIAGE.

Capacity of Trolley
No. of trip.
Time required for 1 No, trip.
Working hours. $=1495 \times 2=2991$
Add idle hours @ 10%. $=2991 \times 1.10=3290 \times 343=1128393$
(II) LOADING.

Quantity
Capacity of loader.
$=224303$
$=2014 \mathrm{Cft}: /$ hour
Working hours.
$=3647073 \mathrm{Cft}:$
$=5117 \mathrm{Cft} /$ hour
$=5117 \times 0.7=3582$
$=36470733582=1018$ Hours.
$=1018 \times 1.10=1120 \times 1837=2057467$
$=224303 \quad \mathrm{Cft}:$
$=150$ Cft:
$=224303 / 150=1495$ No:
$=2$ hours.
$=1495 \times 2=2991$
$=2991 \times 1.10=3290 \times 343=1128393$

- 0.0
$=224303 \quad 2014=111 \quad$ Hours

Add idle hours @ $10 \% . \quad=111 \times 1.1=123 \times 864=105848$
5 Refilling of excavated Earth work

Quantity
Capacity of Dozer.
Due to lead less progress.
Working hours.
Add idle hours @ 10\%.
6 Shifting of gabion from store D.G.Khan to site of work.
Total quantity of gabiob $=5109$ Nos
Qty: of each trip $=100$ Nos
Time required for one trip $=7$ Hours
Total hours required $=358$ Hours
Add idle hours @ 10%. $\quad=358 \times 1,1=393 \times 343=134943$

SUB DIVISIONAL OFFICER,
TAUNSA CONSTRUCTION SUB DIVISION, DEA GHAZI KHAN.
ADDITIONAL WORK AS PER RECOMMENATION OF MODEL STUDY

St.No.	Description	Quantity			Total quantity	Unit $\left\|\begin{array}{c}\text { Rate as per } \\ \text { MRS } 2 \pi \\ 2006\end{array}\right\|$		Amount
		Guide wall	Hadwali	Hocky spur				
1	E/work excavation in irrigation channel lead 300°	122944	95559	257368	475870	\%octt	Department	
2	E/work borrow pits lead 300	421842	354236	2870995	3647073	\%octt	Department	
3	Supplying and dumping stone at site	23647	12667	108000	144314	\%Cft	70785	1021525
4	Supplying and filling stone in wire crates	96082	75766	147385	319233	\%Cft	959.65	3063518
5	Providing laying stone pitching for top layer only on slope.	51862	31051	200164	283078	\%Cft	13727	3885810
6	Providing laying graded baji $1 / 8^{\prime \prime}$ to $2^{\prime \prime}$ on slope	47594	21256	113331	182181	\% CH	1684	N. 3067929
7	Supply of gabion	1538	1213	2359	5109	No	Department	
8	Coursed rubble masonary other than building 1:6	2097	1631	6989	10716	\%Rft	-53215	5486.55 570260
9	Carriage of stone	243627	157425	641440	1042492	$\% \mathrm{Et}$	600	6254952
10	Dressing of earth work	87183	65838	582345	735366	$\% \mathrm{CH}^{\text {s? }}$	Department	
11	Pucca earth work	23739	9700	190864	224303	\%Sft	Depariment	
12	Refilling of earth work	122944	95559	257368	475870	\% CHE	Depariment	
							Total:-	17863994

Sulles
Sub Divlsional Officer
Tounstruction Sub Divieles
Dera Ghazi Gben

ADDITIONAL WORK RECOMMENDED IN MODEL STUDY

GUIDE WALL

ABSTRACT OF QUANTITY

1 E/work excavation in irrigation channel lead 300°

U/s apron	$=$	1	x	814.21	+	826.25	1	2.00	x	13.80	+	19.05	1	2	x	5.25	$=$	70729
Nose	$=$	1	x	105.28	+	148.65	1	200	\times	13.80	+	19.05	1	2	\times	5.25	$=$	10948
Bank	$=$	1	x	10000	\times	13.80	$+$	19.05	1	2.00	x	5.25					$=$	86
bank	$=$	1	x	655.78	+	649.76	1	2.00	\times	6.90	$+$	12.15	1	2	\times	5.25	$=$	32643

2 E/work borrow pits lead 300^{\prime}

Circular	$=$	1	\times	785.00	x	15.00	+	67.00	1	2.00	\times	13.00		418405
Nose	$=$	1	\times	88.31	+	440.48	1	2.00	\times	13.00				3437
													Total:-	421842 Cft
Supplying and dumping stone at site														
D/s	$=$	1	\times	655.78	$+$	649.76	1	2.00	\times	6.90	\times	5.25		23647
													Total:-	23647 Cft

4 Supplying and filling stone in wire crates
Apron

Apron nose
$=2 \times 100.00 \times 13.80 \times 5.25$
14490

U/s circular
Slope
$=1 \times 105.28+148.65 \quad 1 \quad 2.00 \times 13.80 \times 5.25$
Total:- =

Nose
$=2 \times 100.00 \times 29.12 \times 2.63 \times 20.12 \times 2.625$
52181
15288
4925
Total:- $=96082 \mathrm{Cft}$
5 Providing laying stone pitching for top layer only on slope.

U/s	$=$	1	x	714.21	+	691.54	1	2.00	\times	29.12	x	1.30	=	26608
D/s	$=$	1	\times	678.45	+	655.78	1	2.00	\times	29.12	x	1.30	$=$	25254
													Total:- $=$	51862 Cft

6 Providing laying graded bajri
$1 / 8^{\prime \prime}$ to $2^{\prime \prime}$ on slope
Slope (wire crates)
Nose (wire crates)
U/s (Pitching)
D/s (Pitching)

$=$	2	x	100.00	\times	29.12	\times	1.00				
=	1	X	23.57	+	105.28	1	2.00	\times	29.12	x	1.00
$=$	1	x	714.21	+	691.54	1	2.00	\times	29.12	x	1.00
$=$	1	\times	678.45	+	655.78	1	2.00	\times	29.12	\times	1.00

	$=5824$
	$=1876$
	$=2046$.
	$=19426$
Total:-	$=47594 \mathrm{Cft}$
Total:-	$=1538$
	1538 Nos

8 Coursed rubble masonary
other than building $1: 6$

$\begin{aligned} & =2097 \\ \text { Total:- } & =2097 \mathrm{Cft}\end{aligned}$
9 Carriage of stone
Qty: as per item 3
$=23647 \times 1.10$
$=96082 \times 1.10$
$=51862 \times 1.20$
$=47594 \times 1.00$
$=2097 \times 1.00$

10 Dressing of earth work
Top
Sides
Apron
Nose top
Nose slope
Nose apron

$=$	785.40	x	20.00						
=	2	\times	785.40	x	29.12				
=	2	X	785.40	x	14.00				
$=$	1	x	3.14	\times	15.00	1	8.00	x	15.00
=	1	x	23.57	+	105.28	1	2.00	\times	29.12
=	1	\times	105.28	+	148.65	l	2.00	\times	14.00

26011
$=105690$
Qty: as per item 4
Qty: as per item 5
Qty: as per item 6
Qty: as per item 8
$=96082 / 62.48$
Total:- $=1538$ Nos
$=62235$
$=475^{\circ} \mathrm{A}$
$=2097$
Total:- $=243627 \mathrm{Cft}$

	$=15708$	
	$=15742$	
	$=1991$	
	$=$	88
	$=1876$	
	$=1778$	
		87183 Gft

[^3]11 Pucca earth work
Top
$=2 \times 785.40 \times 15.00 \times 1.00$
$=23562$
Nose
$=2 \times 3.14 \times 15.00$
$\times \quad 15.00$
$\times \quad 100$
1
$=177$
Total: $=237 \mathrm{~s}$ St
12 Refilling of earth work
Qty: as per item No. 1 122944
$=122944$
Total:- $=122944 \mathrm{Cft}$
PROPOSED X-SECTION OF GUIDE WALL (Extension of Central Bund)

ADDITIONAL WORK RECOMMENDED IN MODEL STUDY

HOCKY SPUR

ABSTRACT OF QUANTITY

1 E/work excavation in irrigation channel lead 300'

Shank	$=$	1	x	3600	x	10	+	13	1	2	x	3					$=$	124200
U/s straight		,	x	430	\times	13.8	+	19.05	1	2	\times	5.25					$=$	37079
U/s circular		1	\times	315.5	+	301.44	1	2	x	13.8	+	19.05	1	2	x	5.25	$=$	26600
Nose		1	x	113.14	+	156.51	1	2	x	13.8	+	19.05	1	2	x	5.25	$=$	11626
Back		1	x	100	x	13.8	+	19.05	,	2	\times	5.25					$=$	8623
Back		1	x	126.08	+	118.85	1	2	\times	6.9	+	12.15	1	2	x	5.25	$=$	6124
Tondowani wah		1	\times	500	\times	13.8	+	19.05	1	2	\times	5.25					$=$	43116
2 E/work borrow pits in ordinary soil lead 300^{\prime}																Total:-	$=$	257368 Cft
Shank	$=$	1	x	3600	x	20	+	72		2	x	13.00					$=$	2152800
Straight		1	\times	430	\times	20	+	72	1	2	\times	13.00					$=$	257140
Circular		1	x	263.76	\times	20	+	72	1	2	\times	13.00					=	157728
Nose		1	x	157	+	508.68	1	2	\times	13							$=$	4327
Tondowani wah	$=$	1	x	500	\times	20	+	72	1	2	\times	13.00					=	299000
3 Supplying and dumping stone at site																Total:-	$=$	2870995 Cft
Shank	$=$	1	\times	3600	\times	10	x	3									$=$	108000
4 Supplying and filling stone in wire crates																Total:-	$=$	1080 m CH
Straight	=	1	x	430	x	13.8	x	5.25									$=$	31154
	$=$	1	x	430	X	6.9	\times	5.25									=	15577
Circuler	$=$	1	x	301.44	+	315.5	1	2	x	13.8	x	5.25					$=$	22349
Nose	$=$	1	\times	113.14	+	156.51	1	2	\times	13.8	x	5.25					$=$	9768
Back	$=$	1	x	100	\times	13.8	x	5.25									$=$	7245
Back	$=$	1	\times	116.08	+	118.85	1	2	\times	6.9	\times	5.25					$=$	4255
Sloping portion	=	2	\times	100	\times	29.12	\times	2.625									$=$	15288
Nose	$=$	1	x	31.42	+	113.14	1	2	x	29.12	\times	2625					$=$	5525
Tandwani wah	$=$	1	\times	500	\times	13.3	x	5.25									$=$	36225
																Total:-		147385 Cft

5 Providing laying stone pitching
for top layer only on slope.

Shank	=	1	x	3600	x	29.12	x	1.3						$=$	136282
U/s+D/s straight	$=$	2	x	430	\times	29.12	x	1.3						$=$	32556
U/s circular	$=$	1	x	174.22	+	201.44	1	2	x	29.12	x	1.30		$=$	7110
D/s circuler	$=$	1	x	153.29	$+$	126.08	1	2	\times	29.12	\times	1.30		=	5288
Tandowani wah	=	1	\times	500	x	29.12	x	1.3						$=$	18928
					${ }^{\text {a }}$								Total:-	$=$	200164 Cft
Providing laying graded bajri $1 / 8^{\prime \prime}$ to $2^{\prime \prime}$ on slope															
Shank	$=$	1	x	3600	x	29.12	\times	0.7						$=$	73382
U/s+D/s straight	=	2	x	430	\times	29.12	x	0.7						$=$	17530
U/s circular	$=$	1	x	174.22	+	201.44	1	2	\times	29.12	\times	0.70		$=$	3829
U/s+D/s gabion	$=$	2	\times	100	\times	29.12	\times	0.7						=	4077
D/s circuler	$=$	1	\times	153.29	+	126.08	1	2	\times	29.12	\times	0.70		$=$	2847
Nose	=	1	\times	31.42	$+$	113.14	1	2	\times	29.12	\times	0.70		$=$	1473
Tandowani wah	$=$	1	x	500	\times	29.12	\times	0.7							10192
													Total:-	$=$	113331 Cft
Supply of gabion															
Qty: as per item No. 4	-	147385	1	62.48										$=$	2359
													Total:-		2359 Nos

EITAUNSA SUB DIVISION 1TRevised PC-1 of MithawanModi

8 Coursed rubble masonary
other than building $1: 6$

			60	x	29.12	x	2	x	2				$=$	6989
												Total:	$=$	6989 Cf
9	Carriage of stone													
	Qty: as per item 3	$=$	108000	x	1.10								$=$	118800
	Qty: as per item 4	$=$	147385	x	1.10								$=$	162124
	Qty: as per item 5	$=$	200164	x	1.20								$=$	240197
	Qty: as per item 6		113331	x	1.00								$=$	11333.
	Qty: as peritem 8	$=$	6989	x	1.00								$=$	6989
												Total:-	$=$	641440 Cft
10	Dressing of earth work													
	Shank top	$=$	2	x	3600	x	20						$=$	144000
	Apron	=	1	x	3600	x	10						$=$	36000
	Shank Pitching side	$=$	1	x	3600	x	29.12						$=$	104832
	Back side	$=$	2	\times	3600	x	29.12						$=$	209664
	Hocky spur top	$=$	2	x	430	x	20						$=$	17200
	Apron	$=$	2	x	430	x	7	+	14	1	2		$=$	9030
	H.spur(straight) U/s	$=$	1	x	430	x	29.12						$=$	12522
	H.spur(straight) D/s	$=$	1	x	430	x	29.12						$=$	12522
	Circuler top	$=$	2	\times	263.76	x	2912						$=$	15361
	Apron	$=$	2	\times	263.76	x	7	+	14	,	2		$=$	5539
	Sides	$=$	2	\times	263.76	x	29.12						$=$	1534
	Nose top	$=$	2	x	3.14	x	20	x	20	1	8		$=$	314
												Total:-	$=$	582345 ClI
11	Pucca earth work													
	Shank top	$=$	1	x.	3600	x	20	x	1				$=$	72000
	Back	$=$	1	x	3600	x	29.12	\times	1				=	104832
	H.spur straight	$=$	1	x	430	x	20	x	1				=	8600
	Circuler	$=$	1	\times	263.76	x	20	x	1				$=$	5275
	Nose	$=$	1	\times	3.14	x	20	x	20	1	8		$=$	157
												Total:-		190864 CH
12	Refilling of earth work					-								
	Qty: as per item No. 1	$=$	257368										$=$	257368
												Total:-		257368 Cft

CURVED PORTION \& MOLE

From

> Chief Engineer (Research) Irrigation \& Power Department Lahore

To
Chief Engineer Irrigation
D.G. Khan Zone D.G. Khan
No. $86 \quad 1695-\mathrm{C} /$
Dated: $0 \% 1 \% 16$
Subject: MODEL STUDY OF FAN MANAGEMENT OF MITHANWAN HILL
TORRENT D.G. KHAN DISTRICT (HYDRAULIC MODEL STUDY)

Please find enclosed herewith Report No. IRR-.1179/Jannary 2006 in respect of Hydraulic Model Study on the above subject for use in the lied.
D.A. As Above.

C.C. with a copy of Report No.IRR-1179 for information to the:

1- Secretary Irrigation \& Power Department, Lahore
2- \quad Superintending Engineer, Derajat Circle, D. (;, Khan.
3- Principal Research officer (Hydraulics), IR I, Lahore.
4- Executive Engineer, Construction Division, D. G. Khan
5- Senior Research Officer, Hydraulic Research Station. Nandipur.
6- Library IRI Lahore and Nandipur.

IRRIGATION RESEARCH INSTITUTE IRRIGATION \& POWER DEPARTMENT GOVERNMENT OF THE PUNJAB

MODEL STUDY OF FAN MANAGEMENT OF MITHAWAN HILL TORRENT
D.G. KHAN DISTRICT
(HYDRAULIC MODEL STUDY)

MODEL STUDY OF FAN MANAGEMENT
 OF MITHAWAN HILL TORRENT
 D.G. KHAN DISTRICT
 (HYDRAULIC MODEL STUDY)

CONTENTS

SR. DESCRIPTION PAGE Figure TABLE
No.

1. Foreword (i)
2. Executive Summary (ii)
3. Authority 1
4. Background $1-2$
5. The Model 2
1.1
6. Experiments2-101.2-1.11

$$
2.1-2.10
$$

$$
3.1-3.9
$$

$$
4.1-4.9
$$

$$
5.1-5.14
$$

$$
6.1-6.10
$$

$$
7.1-7.37
$$

7. Recommendations10-118
8. Acknowledgement 11
(i)

FOREWORD

The final draft of report contains an account of experimental work carried out for the distribution of flow through the distributors.

In the light of above objective, details of experiments have been embodied in the subsequent sections of the report for the guidance of practising engineers.

EXECUTIVE SUMMARY

A battery of distributors in Mithawan Hill Torrent was constructed to distribute flood discharge in accordance with the rights of inhabitants. Due to complex nature of morphological conditions of the torrent, difficultly was being felt to achieve objectives of proper distribution of discharge through the distributors. For achieving the objectives, experimental work was carried out at Hydraulic Research Station Nandipur and details of experiments with ultimate conclusion have been embodied in the report for the guidance of the designers.

MODEL STUDY OF FAN MANAGEMENT OF MITHAWAN HILL TORRENT D.G. KHAN DISTRICT

AUTHORITY

The study was referred by Executive Engineer D.G. Khan Construction Division, Dera Ghazi Khan vide his letter No. 893/37-W dated 25-06-2005. The work was started at Hydraulic Research Station Nandipur on receipt of funds and pertinent data.

BACKGROUND

Mithawan is one of the major hill torrents of D.G. Khan district, originating from the Suleman range. The discharge coming through the torrent is used for Irrigation purpose by the inhabitants of the area according to their rights, fixed under water act of 1906 and principle of Saropa-Paina. For this purpose, distribution structures have been constructed at the junction of three branches i,e Northern branch, Southern branch and Ganahar branch.

The total discharge of 50,000 cusec as per 25 years return period, reaching at these structures has to be distributed as per Haqooq of the branches mentioned as under.
Northern branch $=15000$ Cusec
Southern branch $=15000$ Cusec
Ganahar branch $=20000$ Cusec

The structures have been constructed on the alluvial unstable sandy bed of Mithawan Hill Torrent and are spread over about one mile width across the flashy hill torrent bed. Due to unstable bed and sand bars on the upstream side, the structures were formed during the current year flood. The distribution of water of the branches was experienced uneven through the distributors. The public is demanding distribution of Mithawan Hill Torrent water in the branches according to their water rights and they emphasized through their representatives for the proper distribution of water in all the three branches of the Hill Torrent.

The problem was referred to Irrigation Research Institute to study the same on a scale model for achieving fair distribution of Mithawan Hill Torrent water as per share of the branches mentioned above.

The main purpose of the study is to evolve out suitable scheme of flood works to ensure, the following objectives.

1. The desired discharge distribution at different stages of flow in the Hill Torrent.
2. The safety of the existing structures.
3. No flow situation through main Ganahar distributor upto Nullah stage of 10,000 Cusec.

MODEL

In order to achieve the objectives and to study the performance of existing distributors, a model of Mithawan Hill Torrent was set up in one of the experimental trays of Hydraulic Research Station Nandipur. The model was constructed on 1:36 geometrical scale according to the latest plantable survey and cross-sections supplied by concerned field formation. A reach of the stream, about 3 miles upstream and 1 mile downstream of the distributors was represented on the model (Fig. 1.1). The bed of the torrent was moulded in sand of average dia ($d_{50}=0.22 \mathrm{~mm}$) keeping in view the $d_{50}(\mathrm{~mm})$ of prototype bed material to correlate the model and prototype roughness. The arrangement of discharge measurement was made on the upstream side of the model to pass accurate discharge to complete the hydrograph of the Hill Torrent.

The arrangements were also made to measure the discharge passing through each branch by fitting V-notches on downstream side of all the distributors. The distributors were constructed in sand cement mortar. Water level gauges were installed * on upstream and downstream side of all the distributors to record water levels at different stages of flood. The central bund and Hudwali Bund were also incorporated in the model as per data provided by the sponsors.

EXPERIMENTS

Initially, a number of rough tests were performed on the model. These tests were performed to simulate the model with prototype flow conditions. On the basis of
these tests, the model was found true replica of the prototype. It was further verified by the field formation who visited the model running for base test at Hydraulic Research Station Nandipur on 02-10-2005. After performing these tests, regular testing program was started and the following tests were performed on the model.

TEST - 1 CALIBRATION / BASE TEST

Fig. (1.3 to 1.11)

TEST - 2 WITH

Fig. (2.1 to 2.10)
i. A partition bund existing in between Southern and Northern distributors was extended in curved shape upto 958 feet with a radius of 900 feet.
ii. The length of existing Hudwali Bund along right flank of the torrent was reduced by 108 feet.

TEST - 3 AS TEST-2 BUT ELIMINATING EXISTING EARTHEN BUND FROM ITS RD 14 TO 16
 Fig. (3.1 to 3.9)

TEST-4 WITH

Fig. (4.1 to 4.9)
i. Head part of Hudwali Bund was given a curvature to its length of about 515 feet and remaining length of 1068 feet was kept straight.
ii. An additional Gunda Bund near RD 13 was provided.
iii. The partition guide bund was kept as it was in Test-2.

TEST-5 WITH

Fig. (5.1 to 5.14)
i. A hockey spur (Fig. 5.2) was tied to the existing left bank at its RD $11+240$ for guiding the flow in the centre of the Nullah.
ii. The straight part of Hudwali Bund was reduced to 826 feet (Fig. 5.3).

TEST - 6 WITH

Fig. (6.1 to 6.10)
i. The length of straight part of Hudwali Bund was reduced to 626 feet (Fig. 6.2).
ii. Modification in the protrusion of Hockey spur.

TEST-7 WITH

Fig. (7.1 to 7.37)

1. A partition bund existing inbetween Northern and Southern distributors was modified as under:-
i. Straight part 280 feet.
ii. Curved part length 785 feet with its radius of 900 feet (Fig. 7.2).
2. Hockey spur (Fig. 7.4) tied to the left bank of the stream bund with the following details:-
i. Shank length 430 feet and hockey part length 264 feet with radius of 252 feet.
ii. Left existing low level bund of the torrent was given proper shape of bund to the tie point of shank of hockey spur (Fig. 8).
3. Hudwali Bund modifications:-
i. Straight part 720 feet.
ii. Curved part 376 feet with radius of 540 feet.

DISCUSSION OF RESULTS

TEST-1
This test was carried out with original conditions on the fresh moulded model. The model was first run with low discharge, the discharge was gradually raised and the hydrograph was completed up to a peak of 50,000 Cusec (Fig. 1.2). The observations of flow currents, water levels and discharge distribution were recorded. The perusal of the results indicated:-

1. That the torrential flow approaching the distributors took leftward embayment at all the stages of the stream and resulted in an excessive
discharge intensity through the Northern distributor over its design capacity of flow.
2. That the existing Hudwali Bund was not guiding the flow properly towards the newly constructed distributors.
3. That inefficient guidance of the partition bund to the flow towards Southern distributor was found on the model.
4. That the approaching flow conditions towards the distributors were found non-uniform at the torrent flow of 10,000 cusec. The discharge distribution through each distributor was recorded.
a. Northern distributor took 4396 Cusec.
b. Southern distributor received 75 Cusec.
c. Ganahar distributor got 523 Cusec.
5. That a standing wave phenomenon just downstream of broad crested weirs (Northern and Southern) was found starting from low stages to the torrential flow stage of 50,000 Cusec. Moreover, number of standing waves downstream of the above weirs were also found increased with the increase in discharge intensity through the weirs. A discharge distribution through the distributors for all stages of the stream flow has been elaborated in tabular as well as bar chart diagram in Fig. 1.11.

TEST - 2
In this test, the following scheme of existing structures was modified to achieve the objective of requisite distribution of discharge of torrential flow through the distributors.

1. A partition bund existing in between Southern and Northern distributors was extended in curved shape upto 958 feet with a radius of 900 feet.
2. The length of existing Hudwali Bund along right flank of the torrent was reduced by 108 feet.

It was conceived from the model in base test that an extension of the above existing partition bund would reduce flow entry into the Northern distributor and increase . flow entry into the Southern distributor. Moreover, leftward push of the Hudwali Bund to the torrential flow may also be mitigated by reducing its length by 108 feet on the model.

With the above setup, the model test indicated as under:-

1. That a requisite flow distribution through the distributors was achieved on the model just upto the stream flow of 10,000 Cusec.
2. That no flow conditions through the Ganahar distributor (main) was achieved on the model. A detail of discharge distribution through the distributors has been elaborated in tabular as well as bar diagram 1 l 1 ig . 2.10.

Meanwhile, Chief Engineer D.G. Khan Zone visited Hydraulic Research Station Nandipur along with his field formation on 02-10-2005 and visualised the model. They made refinements regarding the posture of the local earthen bunds constructed in the bed of stream upstream of the distributors. They also apprised the model men that the water users are controlling low flows of the stream in accordance with their Irrigation requirements with the help of these local bunds but these bunds lose the control on the stream flows at higher stages.

These local bunds existing in the bed of stream were also incorporated on the model. The test run was repeated and model results were found almost similar as reported above. It was noted on the model that these bunds lost their existing posture at and above Nullah stage of 20,000 Cusec. The information regarding the distribution of discharge through the distributors has been given in Fig. 2.10.

TEST - 3

In this test, the infrastructure of Test-2 were kept intact on the model but, earthen bund from RD 14-16 was removed from the model. The results of the model were found almost similar as achieved in test No. 2. The distribution of discharge is embodied in Fig. 3.9. It was considered necessary that some other scheme of flood works should be tested on the model to achieve the requisite objective of distribution of water through the distributors.

TEST-4
At this phase of experimental work on the model, test No. 2 was amended as under:-

1. Head part of Hudwali Bund was given a curvature to its length of about 515 feet and remaining length of 1068 feet was kept straight.
2. An additional Gunda Bund near RD 13 was provided.
3. The partition guide bund was kept as it was in Test-2.

The test run gave the following results:-

1. That a requisite distribution of the discharge through' the distributors was found upto Nullah stage of 30,000 Cusec.
2. That Hudwali Bund gave adequate guidance to the flow but its further modification was found necessary on the model. A distribution of flow through the distributors is given in Fig. 4.9.

TEST - 5

The following scheme of flood works was introduced on the model and test run was completed for full hydrograph of the Hill Torrent.

1. A hockey spur (Fig. 5.2) was tied to the existing left bank at its RD $11+240$ for guiding the flow in the centre of the Nullah.
2. The straight part of Hudwali Bund was reduced to 826 feet (Fig. 5.3).

The inclusion of hockey spur showed its due role for patronizing uniform flow intensity in the center of stream bed upstream of the distributors. Similarly, the Hudwali Bund also gave favourable results by guiding the flow towards the distributors but still it was felt that the scheme would have to be modified to achieve efficacy for all stages of the stream flows. A distribution of discharge is given in Fig. 5.14.

TEST - 6
In this test, the following modified scheme of flood works was incorporated on the model:-

1 The length of straight part of Hudwali Bund was reduced to 626 feet (Fig. 6.2).
2. Modification in the protrusion of Hockey spur.

The results were found similar as in case of test- 5 and the same have been highlighted in Fig. 6.10.

Meanwhile, the Executive Engineer Construction Division D.G. Khan was requested to visit the model to see discharge distribution so far achieved on the model by incorporating different flood works. He visited Hydraulic Research Station Nandipur on 01 -$11-200$ S alongwith Principal Research Officer (Hydraulics) and visualised the working of the devices on model. A detail discussion was also conducted to arrive at more workable and acceptable structures to achieve the full objectives of requisite distribution of discharge through distributors at all stages of stream flow. A number of efforts were made on the model to achieve the requisite distribution of flow through the distributors.

TEST - 7

The following scheme of flood works was incorporated on the model:-

1. A partition bund existing inbetween Northern and Southern distributors was modified as under:-
i. Straight part 280 feet.
ii. Curved part length 785 feet with its radius of 900 feet (Fig. 7.2).
2. Hockey spur (Fig. 7.4) tied to the left bank of the stream bund with the following details:-
i. Shank length 430 feet and hockey part length 264 feet with radius of 252 feet.
iii. Left existing low level bund of the torrent was given proper shape of bund to the tie point of shank of hockey spur (Fig. 8).
3. Hudwali Bund modifications:-
i. Straight part 720 feet.
ii. Curved part 376 feet with radius of 540 feet (Fig. 7.3).

A test run with the scheme of flood works mentioned above was tested on the model and it was seen that requisite discharge distribution through the distributors was achieved on the model. The objectives of the study elaborated in the preceding sections were fully achieved on the model. The test was repeated twice and results were
found satisfactory on the model and discharge distribution through the distributors was recorded as in Table-I.

Table-I

Discharge in Cusec	Northern distributor 2286	Southern distributor 2214	Ganahar distributor
	4571	4464	0
10,000	6500	6464	0
15,000	8246	8175	1980
20,000	11085	11175	3573
30,000	13560	13700	7733
40,000	15050	15000	12666
50,000			19947

NOTE:- Error in sum of used discharge is owing to percolation of water to the model bed and other losses.

After achieving the above results, the following field officers were invited and they visited Hydraulic Research Station Nandipur alongwith PRO (H) on 03-12-2005.
ii. Chief Engineer Irrigation D.G. Khan Zone.
iii. Superintendant Engineer Drainage.
iv. Executive Engineer D.G. Khan Construction Division, Dera Ghazi Khan.

The model was operated in their presence and they found satisfactory functioning of the flood works for achieving requisite discharge distribution through the distributors. However, the Chief Engineer Irrigation D.G. Khan showed his concern on the formation of standing wave phenomenon occuring on the model downstream of the Northern and Southern distributors.

Later on, the same test was repeated for noting the effect of standing wave phenomenon just downstream of broad crest of Northern and Southern distributors. The scour phenomenon recorded on the model is as under:-
i. The maximum scour just downstream of the Northern distributor is found 11 feet on the model (Fig. 7.35).
ii. The maximum scour just downstream of the Southern distributor is found 9 feet on the model (Fig. 7.35).

A full detail of distribution of discharge of individual distributor has been elaborated in Fig. 7.31, 7.32, 7.33, \& 7.34.

RECOMMENDATION

To cope with the situation, the following flood works tested in Test-7 are recommended for implementation at site:-

1. A partition bund existing inbetween Northern and Southern distributors is modified as under:-
i. Straight part 280 feet.
ii. Curved part length 785 feet with its radius of 900 feet (Fig. 7.2).
2. Hockey spur (Fig. 7.4) tied to the left bank of the stream bund with the following details:-
i. Shank length 430 feet and hockey part length 264 feet with radius 252 feet.
ii. Left existing low level bund of the torrent was given proper shape of bund to the tie point of shank of hockey spur (Fig. 8).
3. Hudwali Bund modifications:-
i. Straight part 720 feet.
ii. Curved part 376 feet with radius 540 feet.

The general layout and co-ordinates of the proposed river training works are elaborated in the river survey plan provided by the field formation (Fig. 8). It is recommended that curved portions of the above proposed flood works may be provided with adequate stone pitching and flexible apron. It is further suggested that the existing earthen local low level bund marked as B in Fig. 8 may be maintained at the site for achieving objectives of requisite discharge distribution through the distributors.

It is advisable that alignment of the flood works may be got checked by Irrigation Research Institute at the time of their execution.

ACKNOWLEDGEMENT

The study of "The Fan Management of the Mithawan Hill Torrent D.G. Khan District" has been carried out by Engineer Muhammad Ejaz Mughal, Assistant Director under the supervision of Muhammad Yaqub Luna, Deputy Director (Incharge) Hydraulic Research Station Nandipur, Gujranwala.

The publication of this report was made by Mr. Liaqat Ali, Senior Research Officer (Hydraulics) and Mr. Muhammad Shahid, Junior Research Officer (Publication) of Irrigation Research Institute, Lahore.

The original draft of report was documented jointly by the Incharge officer of Hydraulic Research Station, Nandipur and the concerned Assistant Director. The draft of the report was edited by Mr. Ghulam Qadir, Principal Research Officer (Hydraulics). The report was approved by Mr. Ehsan Ullah Sardar, Chief Engineer, Irrigation Research Zone, Lahore.
COMPARISON OF DISCHARGE DISTRIBUTION
 THROUGH MITHAWAN HILL TORRENT
WEIRS

50000
45000
40000
35000
30000
25000
20000
15000
10000
5000

STAKE HOLDER'S AWARENESS

LAND ACQUISITION, WATER RIGHTS, COMMUNITY DEVELOPMENT IN CONNECTION WITH CONSTRUCTION OF MANAGEMENT STRUCTURES.

Duration	$=$	12		Months				
Social Mobilization Manager Salary	$=$	1	x	30000	x	12	$=$	360000
Field officers (Social Mobilization)	=	4	x	20000	x	12	$=$	960000
Peon / Naib Qasid	$=$	5000	x	12			=	60000
Office Assistant Computer Operator.	=	1	x	12		12000	$=$	144000
T.A/D.A	$=$	500	- D					
	=	5×16	x	12	x	500	$=$	480000
Sub Tot								2004000

Vehicles/equipments.

| Motor Cycles | $=40000$ | $=280000$ |
| :--- | :--- | :--- | :--- |
| Computer with accessories. | $=1 \times 80000$ | $=80000$ |
| Office Rent | $=5000 \times 12$ | $=60000$ |
| Office expenses. | $=6000 \times 12$ | $=72000$ |
| Utilities Bill | $=3000 \times 12$ | $=36000$ |

POL \& maintenance of vehicles. $=50000 \times 12=600000$
Sub Total :- 1128000
TOTAL:- =
3132000

Dy: General Manager (TM)
Punjab Irrigation \& Drainage Authority, Lahore.

FAN MANAGEMENT OF MITHAWAN HILL TORRENT IN

 DISTRICT D.G.KHAN.
STAKE HOLDER'S AWARENESS

LAND ACQUISITION, WATER RIGHTS, COMMUNITY DEVELOPMENT IN CONNECTION WITH CONSTRUCTION OF MANAGEMENT STRUCTURES.

Social Mobilization Manager Salary = required.

Field officers (Social Mobilization) =

Peon / Naib Qasid

Office Assistant Computer Operator. =
T.A.ID.A.

Vehicle / equipment Required

Motor Cycle

Computer with accessories.

Office Rent.

Offices expenses.

Utilities bill.

POL \& maintenance of vehicles.

1 No:

4 No:

1 No:

1 No:

1 Job:

4 No:

1 Job:

1 Job:

1 Job:

1 Job:

1 Job:

TRAINING CENTER

ABSTRACT OF COST

Sr.No.	Quantity	Unit	Description	Rate	Amount
1	9664	\%oCft	E/work excavation in foundation	1267.20	12247
2	1208	\% Cft	Supply \& filling sand under floor	659.40	7966
3	1838	\% Cft	P.C.C 1:4:8	7138.55	131212
4	3534	\%Cft	Pacca brick work 1:6 in foundation \& Plinth Total length of walls $=370^{\prime}$	5983.10	211465
5	416	\%Sft	P/L D.P.C 1:2:4 $1^{1 / 2^{\prime \prime}}$ thick 1 coat of hot bitumen+Polythene.	1928.20	8026
6	479	\%Sft	P/L D.P.C with cement sand plaster and bitumen coating ratio $1: 3,3 / 4^{\prime \prime}$ thick	1364.30	6534
7	5279	\%oCft	E/work excavation from out side B.pits in ordinary soil dressed lead 7.0 Km	2978.00	15722
8	3392	\%Cft	Pacca brick work 1:6 in ground floor walls	6302.55	213809
9	854	P.Sft	P/L Aluminium window of approved size with tinted glass	300.00	256050
10	180	P.Sft	P/F deodar wood dolly frame having $1^{1 / 2^{\prime \prime}} \times 1^{1 / 2^{\prime \prime}}$ vertical \& horizental double post with $1^{1 / 2 "} \times 1^{1 / 2^{\prime \prime}}$ full width of james braches at $12^{\prime \prime} \mathrm{i} / \mathrm{f}$ filling of spaces in between braces with 1:3:6 P.C.C fixing oly of approved quality i / c holdfast complete in all respects teak wood ply.	168.50	30372
11	2125	P.Cft	R.C.C 1:2:4	144.20	306356
12	7716	\%Kg	Febrication of mild steel reinforcement	4432.10	341993
13	13672	\%Sft	Cement plaster 1:3 upto 20^{\prime} height	945.35	129251
14	2975	\%Sft	P / L roof insulation, comprising of single layer of tiles $9^{\prime \prime} \times 41 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}$ grated with cement sand mortor 1:3 laid over $2^{\prime \prime}$ thick earth i/c mud plaster over thermopore sheet over polythene sheet 300 gauge over layer of bitumen complete in all respects $1^{\prime \prime}$ thick thermopore.	2910.55	86589
15	1100	\% Cft	P/L watering \& ramming brick ballast $11 / 2^{\prime \prime}$ to $2^{\prime \prime}$ gauge mixed with sand for floor and foundation.	1559.60	17159
16	208	\%Cft	P.C.C 1:2:4	9936.95	20681

Sr.No.	Quantity	Unit	Description	Rate	Amount
17	2975	P.Sft	Providing laying master glazed tiles (gronite) 24 "x24" on floor complete in all respect laid over 1:6 C/s morter and gronted with white cement with glour	140.00	416500
18	472	P.Sft	P/L master glazed tiles 12 " $\times 18^{\prime \prime}$ for wall (coloured)	120.00	56640
19	8	P.No	P/F sliding bolt brass 10 " long	111.85	895
20	133	P.Sft	First class deodar wood wrought joinery in doors \& windows etc pannelled or pannelled or glazed fully glazed fixed in position i/c holdfast hinges toner bolts, chocks rubber steps cleats G.I claps, handles and chord with hocks etc complete $2^{\prime \prime}$ thick.	604.85	80445
21	395.63	\%Cft	Pacca brick work 1:6 in 1st: floor.	6497.90	25707
22	165.00	P.Rft	P/L RCC pipe 4" dia in sewer.	28.75	4744
23	1.00	E.No	P/L cast iron main hole cover $18{ }^{\prime \prime}$ dia.	763.20	763
24	24.00	P.Sft	P/F vinboard cabinet with drawers in kitchen i.c termite profing and polishing or painting with synthetic enamel as specified with handles, hinges, screws, etc complete in all respect.	262.45	6299
25	1.00	E.No	P/F stainless steel sink $48^{\prime \prime} \times 24^{\prime \prime}$	3951.00	3951
26	1.00	E.No	P/F glazed earthen ware water closet squatter type (Orisa pattern) combined with foot rest.	1144.40	1144
27	1.00	E.No	P/F plastic made low down flushing citern (3gallon capacity) i/c bracket sets copper connection etc complete coloured.	907.65	908
28	1.00	E.No	P/F glazed earthen ware water closet European type excluding seat cover. Coloured.	1943.50	1944
29	1.00	E.No	P/F double seat cover only.	361.40	361
30	2.00	E.No	P/F earthen water wash hand basin $22^{\prime \prime} \times$ 16 " i/c bracket set, waste pipe and waste couplin etc coloured with pedastal.	1641.75	3284
31	2.00	E.No	P/F Chromium Plated soap dish.	164.20	328
32	2.00	E.No	P/F chromium plated toilet paper holder.	284.90	570
33	1.00	E.No	P/F chromium plated towel rail.	310.80	311

[^4]| Sr.No. | Quantity | Unit | Description | Rate | Amount |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | 1.00 | E.No | P/F looking glass $22^{\prime \prime} \times 16^{\prime \prime}$. | 331.70 | 332 |
| 35 | 1.00 | E.No | P/F glass shelf $24^{\prime \prime} \times 5^{\prime \prime}$ with chromium plated brackets only. | 301.25 | 301 |
| 36 | 6.00 | E.No | P/F chromium plated tee stop cock $1 / 2^{\prime \prime}$ dia. | 302.80 | 1817 |
| 37 | 3.00 | E.No | P/F underground stop cock with chromium plated cover. | 431.85 | 1296 |
| 38 | 5.00 | E.No | P/F chromium plated bib cock 1/2' dia. | 294.40 | 1472 |
| 39 | 1.00 | E.No | P/F chromium plated shower rose $1 / 2^{\prime \prime} \times 4^{\prime \prime}$. | 307.60 | 308 |
| 40 | 3.00 | E.No | P/F chromium plated mixing valve for wash hand basin sink or shower. | 1091.00 | 3273 |
| 41 | 4.00 | E.No | P/F "P" Trap 4" glazed. | 89.75 | 359 |
| 42 | 2.00 | E.No | P/F chromium plated gas cock single way. | 174.40 | 349 |
| 43 | | | P/F G.I. pipe in trenches medium quality. | | |
| | 300.00 | P.Rft | $1{ }^{\prime \prime}$ dia | 64.90 | 19470 |
| | 600.00 | P.Rft | $3 / 4^{\prime \prime}$ dia | 45.30 | 27180 |
| | 200.00 | P.Rft | 1/2" dia | 35.50 | 7100 |
| 44 | 1.00 | E.No | P/F fiber glass water tank i/c stand etc complete in all respect. | 14000.00 | 14000 |
| 45 | 1.00 | E.No | P/F electric water pump. | 12000.00 | 12000 |
| 46 | 133.00 | \%Sft | Painting new surface any type primary coat and 2 coats. | 769.80 | 1024 |
| 47 | 13672 | \%Sft | Primary coat of chalk under distemper, | 40.85 | 5585 |
| 48 | 13672 | $\% \mathrm{Sft}$ | Distempering new surface 3 coats, | 181.40 | 24801 |
| 49 | 2360 | P.Sft | Painting texture paint on walls. | 70.00 | 165200 |
| 50 | | | S/E PVC pipe for wiring recessed in walls including inspection boxes, pull boxes, hooks, cutting jharries and repairing surface. | | |
| | 500.00 | P.Rft | $20 \mathrm{~mm} \mathrm{i} / \mathrm{d}$ | 13.45 | 6725 |
| | 200.00 | P.Rft | $25 \mathrm{~mm} \mathrm{i} / \mathrm{d}$ | 17.70 | 3540 |
| 51 | | | S/E of single core PVC insulated copper conducter cables in prelaid PVC pipe 250/440 volts PVC insulated. | | |
| | 2500 | P.Rft | -3/0.029 | 4.80 | 12000 |
| | 1800 | P.Rft | 7/0.029 | 6.50 | 11700 |
| | 300 | P.Rft | 710.044 | 10.50 | 3150 |

[^5]| Sr.No. | Quantity | Unit | Description | Rate | Amount |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 52 | 15.00 | E.No | S/E of underground boxes. | 150.00 | 2250 |
| 53 | 120.00 | E.No | S/E of switches fitted in plates complete in all respect, fancy fitting i/c dimmer of fan, plug. | 220.00 | 26400 |
| 54 | | | S/E of iron / aluminium clad 500 volts main switches with circuit breaker on angle iron board with 3 mm (1/8) thick M.S. sheet covering i/c bonding to earth with necessary flexible pipe and thimbles etc double pole. | | |
| | 1.00 | E.No | 50 Amp: | 1614.70 | 1615 |
| 55 | | | S/E of electric circuit breaker. | | |
| | 1.00 | E.No | 50 Amp: | 650.00 | 650 |
| 56 | 6.00 | E.No | S/E of 3 pin 10/15 Amp switches and plug combined recessed type. | 78.95 | 474 |
| 57 | 1.00 | E.No | P/Fitting gas geaser. | 12000.00 | 12000 |
| 58 | 18.00 | E.No | S/E of tube light i/c rod, choke, strater, frame flexible wire i/c connection from ceiling rose etc double rod 30 watts. | 890.95 | 16037 |
| 59 | 18.00 | E.No | S/E of ceiling rose. | 16.10 | 290 |
| 60 | 15.00 | E.No | S / E of fancy brackets for lighting, | 1000.00 | 15000 |
| 61 | 2.00 | E.No | SIE of leakage breaker. | 5000.00 | 10000 |
| 62 | 70.00 | E.No | Laying cutting jointing testing and disinfecting cast iron pipe line in trenches with spigot and socket chaulked lead joints i/c cast of material such as lead yarn, etc complete in all respect $3^{\prime \prime}$ dia. | 25.10 | 1757 |
| 63 | 3258 | P.Sft | P/L fancy glazed tile (National, Master, Solo Shabbir etc). | 170.00 | 553775 |
| 64 | 720 | P. Sft | P/L cement tiles for roof. | 80.00 | 57600 |
| 65 | 50.00 | P.Rft | P/F curtain railing. | 100.00 | 5000 |
| 66 | 50.00 | P.Rft | P/F curtain of approved quality. | 300.00 | 15000 |
| 67 | 1.00 | E.No | Providing steel almirah. | 10000.00 | 10000 |
| 68 | 4.00 | E.No | Providing Sofa set | 25000.00 | 100000 |
| 69 | 4.00 | E. No | Providing Centre table. | 6000.00 | 24000 |
| 70 | 8.00 | E.No | Providing side table. | 3500.00 | 28000 |
| 71 | 1.00 | E.No | Providing dining table with 8 No. chairs. | 40000.00 | 40000 |

TRAINING CENTRE

COVERED AREA
$49.50 \times 39.75=1969.0$ SFT
$20.0 \times 8.375=168.0$ SFT
$47.50+20.50 / 2 \times 16.25=\frac{553.0 \mathrm{SFT}}{2690.0 \mathrm{SFT}}$
PLAN

MAINTENANCE COST OF EXECUTED WORK

ABSTRACT OF COST

| Sr.No. | Quantity | Unit | Description | Amount |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Job
 E/work, Stone work, Gabion work,
 Carriage | 7000000 | | | |

SUB DIVISIONAL OFFICER, TAUNSA CONSTRUCTION SUB DIVISIC DERA GHAZI KHAN.

STONE FOR INITIAL LAUNCHING.

DETAIL \& COST

Sr.No.	Quantity	Unit	Description	Rate MRS Jan 2005	Amount
	2390304 Cft		A乡Kा -JUk/z		
1			Total quantity of stone in apron of work done	$\therefore \cot$	
2	144314	Cft	Total quantity of stone in apron of work to be done		
Total:-	2534618		Required quantity of Reserve stock @ 10% of total quantity $=253462$ Cft		
1	253462	\%Cft	Supply of stone at quarry	396	1003710
2	278808.2	\%Cft	Carriage of stone upto 50 Km	600	1672849
				Total:-	2676559

ECONOMIC ANALYSIS

PROJECT COST.317.530
COST BENEFIT RATIO1: 1.570
NET PRESENT WORTH 165.364
E.I.R.R. 20.971

$$
\underset{\sim}{c}
$$

$$
0.023
$$

$$
\begin{gathered}
\hline \begin{array}{c}
\text { Prest } \\
\text { Worth }
\end{array} \\
\hline \hline 5.080 \\
\hline 4.415 \\
\hline 58.875 \\
\hline 51.180 \\
\hline 44.469 \\
\hline 38.653 \\
\hline 33.643 \\
\hline 29.259 \\
\hline
\end{gathered}
$$

$$
\frac{16.732}{14.585}
$$

$$
12.616
$$

$$
\begin{aligned}
& 7.248 \\
& \hline 6.263 \\
& \hline 5.458 \\
& \hline 4.742 \\
& \hline 4.116 \\
& \hline 3.579 \\
& \hline 3.132 \\
& \hline 2.684 \\
& \hline
\end{aligned}
$$

-153.260
-65.515
63.583
55.272
48.025
41.744
36.333
31.598
27.443
23.868

23.868
20.775
18.070

 \(\frac{18.070}{15.751}\)
 13.625
 11.885
$\frac{10.339}{8.987}$

8.987
7.827
6.764

 6.764
 5.894
5.121
4.445
3.865
3.865
3.382
2.899
2.222
559.975

D.F
15%
0.87
0.756
0.658
0.572
0.497
0.432
0.376
0.327
0.284
0.247
0.215
0.187
0.163
0.141
0.123
0.107
0.093
0.081
0.07
0.061
0.053
0.046
0.04
0.035
0.03
0.026
0.023

$$
\begin{array}{l|l|l}
0 & \pm & \bar{N} \\
0 & \infty & ल \\
- & 0 & \infty
\end{array}
$$

COST-BENEFIT RATIO

D.F. 15\%	Present Worth	Benefits	D.F. 15%
0.870	158.340	5.84	0.870
0.756	69.930	5.840	0.756
0.658	12.678	89.476	0.658
0.572	17.225	89.476	0.572
0.497	3.156	89.476	0497
0.432	2.744	89.476	0.432
0.376	2.388	89.476	0.376
0.327	2.077	89.476	0.327
0.284	1.804	89.476	0.284
0.247	1.569	89.476	0.247
0.215	1.365	89.476	0.215
0.187	1.188	89.476	0.187
0.163	1.035	89.476	0.163
0.141	0.895	89.476	0.141
0.123	0.781	89.476	0.123
0.107	0.680	89.476	0.107
0.093	0.591	89.476	0.093
0.081	0.514	89.476	0.081
0.07	0.445	89.476	0.07
0.061	0.387	89.476	0.061
0.053	0.337	89.476	0.053
0.046	0.292	89.476	0.046
0.04	0.254	89.476	0.04
0.035	0.222	89.476	0.035
0.03	0.191	89.476	0.03
0.026	0.165	89.476	0.026
0.023	0.146	89.476	0.023
	281399		

BENEFIT COST RATIO

NET PRESENT WORTH.

Year	Cost		Total cost.	Benefits	Incremental benefits.	$\begin{aligned} & \hline \hline \text { D.F. } \\ & 15 \% \end{aligned}$	Present worth
	Const.	O\&M					
1	182.000	0.000	182.000	5.84	-176.161	0.870	-153.26
2	92.500	0.000	92.500	5.840	-86.660	0.756	-65.51
3	19.268	0.000	19.268	89.476	70.208	0.658	46.20
4	23.762	6.351	30.113	89.476	59.363	0.572	33.96
5		6.351	6.351	89.476	83.125	0.497	41.31
6		6.351	6.351	89.476	83.125	0.432	35.91
7		6.351	6.351	89.476	83.125	0.376	31.25
8		6.351	6.351	89.476	83.125	0.327	27.18
9		6.351	6.351	89.476	83.125	0.284	23.61
10		6.351	6.351	89.476	83.125	0.247	20.53
11		6.351	6.351	89.476	83.125	0.215	17.87
12		6.351	6.351	89.476	83.125	0.187	15.54
13		6.351	6.351	89.476	83.125	0.163	13.55
14		6.351	6.351	89.476	83.125	0.141	11.72
15		6.351	6.351	89.476	83.125	0.123	10.22
16		6.351	6.351	89.476	83.125	0.107	8.89
17		6.351	6.351	89.476	83.125	0.093	7.73
18		6.351	6.351	89.476	83.125	0.081	6.73
19		6.351	6.351	89.476	83.125	0.07	5.82
20		6.351	6.351	89.476	83.125	0.061	5.07
21		6.351	6.351	89.476	83.125	0.053	4.41
22		6.351	6.351	89.476	83.125	0.046	3.82
23		6.351	6.351	89.476	83.125	0.04	3.32
24		6.351	6.351	89.476	83.125	0.035	2.91
25		6.351	6.351	89.476	83.125	0.03	2.49
26		6.351	6.351	89.476	83.125	0.026	2.16
27		6.351	6.351	89.476	83.125	0.023	1.91
TOTAL :-							165.36

E.I.R.R.
DISCOUNT CASH FLOW OF NET BENEFITS.

Year	PROJECT COSTS.			Project benefits.	Net benefits.	RATE OF DISCOUNT (PERCENT)					
	Capital	O\&M	Total			15		20		25	
						D.F. 15\%	Present worth	D.F. 20\%	Present worth	D.F. 25\%	Present worth
1	182.000	0.000	182	5.84	-176.160	0.870	-153.26	0.833	-146.74	0.8	-140.93
2	92.500	0	92.500	5.840	-86.660	0.756	-65.51	0.694	-60.14	0.64	-55.46
3	19.268	0	19.268	89.476	70.208	0.658	46.20	0.579	40.65	0.512	35.95
4	23.762	6.351	30.113	89.476	59.363	0.572	33.955	0.482	28.61	0.409	24.28
5	---	6.351	6.351	89.476	83.125	0.497	41.31	0.402	33.42	0.327	27.18
6	--	6.351	6.351	89.476	83.125	0.432	35.91	0.335	27.85	0.262	21.78
7	--	6.351	6.351	89.476	83.125	0.376	31.25	0.279	23.19	0.209	17.37
8	---	6.351	6.351	89.476	83.125	0.327	27.18	0.233	19.37	0.167	13.88
9	---	6.351	6.351	89.476	83.125	0.284	23.61	0.194	16.13	0.134	11.14
10	---	6.351	6.351	89.476	83.125	0.247	20.53	0.162	13.47	0.107	8.89
11	---	6.351	6.351	89.476	83.125	0.215	17.87	0.135	11.22	0.085	7.07
12	---	6.351	6.351	89.476	83.125	0.187	15.54	0.112	9.31	0.068	5.65
13	---	6.351	6.351	89.476	83.125	0.163	13.55	0.093	7.73	0.055	4.57
14	---	6.351	6.351	89.476	83.125	0.141	11.72	0.078	6.48	0.044	3.66
15	---	6.351	6.351	89.476	83.125	0.123	10.22	0.065	5.40	0.035	2.91
16	-	6.351	6.351	89.476	83.125	0.107	8.89	0.054	4.49	0.028	2.33
17	---	6.351	6.351	89.476	83.125	0.093	7.73	0.045	3.74	0.023	1.91
18	---	6.351	6.351	89.476	83.125	0.081	6.73	0.038	3.16	0.018	1.50
19	---	6.351	6.351	89.476	83.125	0.07	5.82	0.031	2.58	0.014	1.16
20	--	6.351	6.351	89.476	83.125	0.061	5.07	0.026	2.16	0.011	0.91
21	---	6.351	6.351	89.476	83.125	0.053	4.41	0.022	1.83	0.009	0.75
22	---	6.351	6.351	89.476	83.125	0.046	3.82	0.018	1.50	0.007	0.58
23	--	6.351	6.351	89.476	83.125	0.04	3.32	0.015	1.25	0.006	0.50
24	---	6.351	6.351	89.476	83.125	0.035	2.91	0.013	1.08	0.0047	0.39
25	---	6.351	6.351	89.476	83.125	0.03	2.49	0.01	0.83	0.0037	0.31
					1612.37		161.29		58.55		-1.72

[^6]E.I.R.R.

BENEFITS ACHIEVED DUE TO DAMAGES AVERTED TO infrastructure.

$\begin{aligned} & \hline \mathrm{Sr} \\ & \mathrm{No} . \\ & \hline \end{aligned}$	Description.	Quantity	Unit	Rate (Rs. In Million)	Cost in Million
1	HOUSES	1000	No:	0.0015	1.500
2	SCHOOLS	5	No:	0.0150	0.075
3	METALLED ROAD	100	Km	0.0150	1.500
4	BASIC HEALTH UNITS	3	No:	0.0015	0.005
5	ELECTRIC / TELEPHONE LINES	20	Km	0.0030	0.060
6	CANALS	24	Miles	0.0225	0.540
	RAILWAY TRACK	16	Km	0.0300	0.480
	FLOOD BUND	12	Miles	0.0150	0.180
	OTHER PUBLIC PROPERTY		Lump sum	1.5000	1.500
	TOTAL:-				5.84

DETAIL DRAWING OF MITHAWAN HILL TORRENT PROJECT

[^0]: EITAUNSA SUB DIVISION 1IESTIMATEINEW mITHAWANSheet1

[^1]: ETTAUNSA SUB DIVISION 1IESTIMATEINEW mITHAWANSheet ?

[^2]: EITAUNSA SUB DIVISION 1IESTIMATEINEW mITHAWANSheel1

[^3]: EITAUNSA SUB DIVISION 1 Revised PC-I of MilhawanModi

[^4]: EITAUNSA SUB DIVISION 11Revised PC-I of MithawanC. Tc

[^5]: E:ITAUNSA SUB DIVISION 1/Revised PC-I of Mithawanc TC

[^6]: NPV of benefits @ 20\%

